Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}5^{x+2}=25^y\\27^y=81\cdot3^{x+4}\end{matrix}\right.\)
Từ \(27^y=81\cdot3^{x+4}\Rightarrow\left(3^3\right)^y=3^4\cdot3^{x+4}\)
\(\Rightarrow3^{3y}=3^{x+8}\)\(\Rightarrow3y=x+8\left(1\right)\)
Lại có: \(5^{x+2}=25^y\Rightarrow5^{x+2}=\left(5^2\right)^y\)
\(\Rightarrow5^{x+2}=5^{2y}\Rightarrow x+2=2y\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có:
\(\left(1\right)\Leftrightarrow3y=2y+6\Leftrightarrow y=6\)
\(\Rightarrow x+2=2y=2\cdot6=12\Rightarrow x=10\)
1.
\(\left(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}\right)-x:\frac{3}{2}=\frac{7}{3}\\
\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}\right):\frac{3}{2}-x:\frac{3}{2}=\frac{7}{3}\\\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x\right]:\frac{3}{2}=\frac{7}{3}\\
\left(1-\frac{1}{99}\right)-x=\frac{7}{3}\times\frac{3}{2}\\
\frac{98}{99}-x=\frac{7}{2}\\
x=\frac{98}{99}-\frac{7}{2}=\frac{-497}{198}\)
2.\(\frac{x}{y}=\frac{4}{3}\Rightarrow\hept{\begin{cases}x=4a\\y=3a\\x-y=4a-3a=a\end{cases}}\\ \left(x-y\right)^{2015}=5^{2015}\Rightarrow x-y=5\\ \Rightarrow a=5\Rightarrow\hept{\begin{cases}x=4\times5=20\\y=3\times5=15\end{cases}}\)
5x+2 = 25y
27y = 81.3x+4
Đề như vầy hả