K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

bạn học đồng dư thức chưa

25 tháng 7 2016

Rồi bạn 

25 tháng 7 2016

Ta có:5 đồng dư với 1(mod 4)

\(\Rightarrow\)512 đồng dư với 1(mod 4)

Đặt 512=4k+1(k thuộc N)

\(\Rightarrow17^{5^{12}}=17^{4k+1}\)

Bn làm tiếp

8 tháng 2 2018

Chữ số tận cùng của \(2^{202}\) là 4.

Chữ số tận cùng của biểu thức A: là 7

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "

chúc bạn thành công

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)

chúc bạn thành công

30 tháng 6 2020

Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)

Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.

TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)

TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)

TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)

TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\) 

(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)

Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)

8 tháng 2 2018

1)

a) Ta có:

3512=353.353.353.353=....75......75....75.....75=....25

Vậy hai chữ số tận cùng của 3512là 25

b) Ta có:

5523=52.52....52.5=....25....25 . ... .....25 . 5 = ....25

=> Hai chữ số tận cùng của 5523 là 25

Vậy hai chữ tận cùng của 5523 là 25.