Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(f\left(x\right)=x^3-6x^2+11x-6\)
\(=x^3-x^2-5x^2+5x+6x-6\)
\(=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
b/ \(f\left(x\right)=x^3-19x-30\)
\(=x^3+3x^2-3x^2-9x-10x-30\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
c/ \(f\left(x\right)=x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
a
\(x^2-3x-2=\left(x^2-3x+\frac{9}{4}\right)-\frac{17}{4}=\left(x-\frac{3}{2}\right)^2-\sqrt{\frac{17}{2}}^2\)
\(=\left(x-\frac{3}{2}-\sqrt{\frac{17}{2}}\right)\left(x-\frac{3}{2}+\sqrt{\frac{17}{2}}\right)\)
b
\(x^4+x^2-2=x^4-x^3+x^3-x^2+2x^2-2=x^3\left(x-1\right)+x^2\left(x-1\right)+2\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3+x^2+2x+2\right)\)
c
\(x^3-19x-30=x^3+2x^2-2x^2-4x-15x-30\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-15\right)\)
Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .
a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).
Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)
\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).
Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
b ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).
Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)
\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .
Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
Chúc bạn học tốt
a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)
\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b )
\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)
c )
\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
a: \(3x^4-4x^3+1\)
\(=3x^4-3x^3-x^3+1\)
\(=3x^3\left(x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(3x^3-x^2-x-1\right)\)
b: \(x^3-19x-30\)
\(=x^3-4x-15x-30\)
\(=x\left(x-2\right)\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x-15\right)\)
\(=\left(x+2\right)\cdot\left(x-5\right)\left(x+3\right)\)