Tính và so sánh

a/ A = (3 + 5)2 và B...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

a/\(A=\left(3+5\right)^2=8^2=64\)

\(B=3^2+5^2=9+25=34\)

\(\Rightarrow A>B\)

b/ \(C=\left(3+5\right)^3=8^3=512\)

\(D=3^3+5^3=27+125=152\)

\(\Rightarrow C>D\)

3 tháng 2 2022

a/ A= (3+5)2 = 82 = 64

   B = 32 + 52 = 9 + 25 = 34

vì 64>34 => A > B

b/ C = (3+5)3 = 83 = 512

    D = 33 + 53 = 27 + 125 = 152

Vì 512>152 => C > D

5 tháng 2 2022

a/ A = 82

A = 64

B = 9 + 25, B = 34

b/ C = 83, CC = 512

D = 27 + 125

D = 152

25 tháng 12 2021

S = 1 + 3 + 32 + 33 + ... + 38 + 39

S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )

S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 ) 

S = 4 + 4 .32 + .. + 4 . 38

S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4

Vậy S \(⋮\)4 ( đpcm )

Học tốt

#Dương

S = 1 + 3 + 3+ 3+ 34+35+ 3+ 3+ 38+39

S=( 1 + 3)+(3+ 33)+(34+35)+(3+ 37)+(38+39)

s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)

S=4.(1+32+34+36+38)

CHIA HẾT CHO 4

27 tháng 7 2021

a t21B uhx53

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

25 tháng 7 2019

a. 52 + (x+3) = 52

=> x + 3    = 52 - 52

=>  x + 3   =  0

=>  x  = -3

25 tháng 7 2019

b. 23 + (x-32) = 53 - 43

=> 8 + (x-9) =  125 - 64

=> x - 9 = 125 - 64 - 8

=> x - 9 =  53

=> x    =  53 + 9

=> x    =   62

25 tháng 7 2021

i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)

\(=\)\(2345-1000\div\left[19-2.3^2\right]\)

\(=\)\(2345-1000\div\left[19-2.9\right]\)

\(=\)\(2345-1000\div\left[19-18\right]\)

\(=\)\(2345-1000\div1\)

\(=\)\(2345-1000\)

\(=\)\(1345\)

j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)

\(=\)\(128-\left[68+8.2^2\right]\div4\)

\(=\)\(128-\left[68+8.4\right]\div4\)

\(=\)\(128-\left[68+32\right]\div4\)

\(=\)\(128-100\div4\)

\(=\)\(128-25\)

\(=\)\(3\)

k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)

\(=\)\(568-\left\{5.134+10\right\}\div10\)

\(=\)\(568-\left\{670+10\right\}\div10\)

\(=\)\(568-680\div10\)

\(=\)\(568-68\)

\(=\)\(500\)

25 tháng 7 2021

a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+67\right\}\div15\)

\(=\)\(107-105\div15\)

\(=\)\(107-7\)

\(=\)\(7\)

b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)

\(=\)\(307-\left[20\div4+9\right]\div2\)

\(=\)\(307-\left[5+9\right]\div2\)

\(=\)\(307-14\div2\)

\(=\)\(307-7\)

\(=\)\(300\)

c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)

\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)

\(=\)\(205-\left[1200-10^3\right]\div40\)

\(=\)\(205-\left[1200-1000\right]\div40\)

\(=\)\(205-200\div40\)

\(=\)\(205-5\)

\(=\)\(200\)

25 tháng 10 2021

a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9

Ta có: 2 = 1 . 2

           2^2 = 2 . 2

           2^3 = 2^2 . 2

           .....

=>       1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)

=>       1 + 2 + 2^2 + ... + (2^8 . 3)

=>       1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)

=>       1 + 2 + 2^2 + ... + (2^7 . 7)

=>        .....

=>        1 + 2 . 311