Đặt điện áp xoay chiều có u = 100
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)

\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)

Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)

A đúng

24 tháng 8 2016

Ta có: L = R^2 C = r^2 C
\Rightarrow Z_L. Zc = R^2 = r^2

Điện áp hiệu dụng của đoạn mạch RC gấp \sqrt{3} lần điện áp hiệu dụng hai đầu cuộn dây 
I. \sqrt{R^2 + Z_c^2} = \sqrt{3}.I. \sqrt{r^2 + Z_L^2}\Leftrightarrow R^2 + Z_c^2 = 3 (r^2 + Z_L^2)
\Leftrightarrow Z_L.Zc + Z_c^2 = 3.Z_L.Zc + 3 Z_L^2
\Leftrightarrow Zc(Z_L + Zc) = 3 Z_L (Z_L + Zc)
\Rightarrow Zc = 3Z_L \Rightarrow R^2 = 3 Z_L^2 \Rightarrow R = Z_L\sqrt{3}
=> Hệ số công suất của đoạn mạch là
cos \varphi = \frac{R + r}{\sqrt{(R + r)^2 + (Z_L - Zc)^2}} = \frac{2R}{\sqrt{4R^2 + 4 Z_L^2}} = \frac{2\sqrt{3}Z_L}{\sqrt{4.3. Z_L^2 + 4 Z_L^2}} = \frac{\sqrt{3}}{2}

19 tháng 8 2016
I = \frac{I_0}{\sqrt{2}} = 200 (V)

Đáp án đúng: B

3 tháng 3 2017

quay vòng tròn lượng giác rất có ích trong bài này hihi

24 tháng 8 2016

Cường đô ̣dòng điêṇ vuông pha hiêụ điêṇ thế hai đầu mac̣h: 
\Rightarrow (\frac{u}{U_0})^2 + (\frac{i}{I_0})^2 = 1 \Leftrightarrow U_0 = 200\sqrt{2}V \Rightarrow U = 200 V

10 tháng 4 2018

Chọn B.

Từ Z C = R =>  U O C = U O R  = 100V

uR và uC vuông pha nhau, nên ta có hệ thức độc lập

U C 2 U O C 2 + U R 2 U O R 2 = 1 ⇔ U C 2 100 2 + 50 2 100 2 = 1 ⇒ U C 2 = 7500

 => U C = ± 50 3 V vì uR đang tăng nên khi đó uC âm → chọn B

 

11 tháng 6 2016

Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm   hay  ZL=2ZC =2.100=200 → L=2/π  ( D)

                 Sử dụng hình vẽ suy luận cho nhanh :              R ZL ZC UAm Um

                  

29 tháng 5 2016

Bài này thì có vẹo gì đâu bạn.

\(u=100\sqrt 2\cos(100\pi t)(V)\)

\(Z_L=\omega L = 10\Omega\)

\(Z_C=\dfrac{1}{\omega C}=20\Omega\)

Tổng trở \(Z=\sqrt{r^2+(Z_L-Z_C)^2}=10\sqrt 2 \Omega\)

\(\Rightarrow I_o=\dfrac{U_0}{Z}=10A\)

\(\tan\varphi=\dfrac{Z_L-Z_C}{R}=-1\Rightarrow \varphi=-\dfrac{\pi}{4}\)

Suy ra: \(\varphi=\dfrac{\pi}{4}\)

Vậy \(i=10\cos(100\pi t +\dfrac{\pi}{4})\) (A)