Chứng minh định lí: “Nếu hai đường thẳng xx’, y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

O x y x' y'
Vì \(\widehat{xOy}=90^0\)nên \(\widehat{x'Oy'}=\widehat{xOy}=90^0\)(đối đỉnh)
Vì \(\widehat{xOy}+\widehat{yOx'}=180^0\Rightarrow\widehat{yOx'}=180^0-90^0=90^0\)
Vì \(\widehat{yOx'}=\widehat{xOy'}\)(đối đỉnh) nên) \(\widehat{xOy'}=90^0\) 
Vậy các góc xOy, x'Oy', x'Oy, xOy' đều là góc vuông.
 

12 tháng 7 2018

ai tích mình mình tích lại cho

8 tháng 9 2017

O 50* x x' y y' n m

a)

=> xÔy đối đỉnh x'Ôy' nên xÔy = x'Ôy' = 50o

Ta có : xÔy + yÔx' = xÔx' (kề bù)

50o + yÔx' = 180o

yÔx' = 180o - 50o

yÔx' = 130o

=> yÔx' đối đỉnh xÔy' nên yÔx' = xÔy' = 130o

b) Vì yÔx' đối đỉnh xÔy' mà Om và On là tia phân giác của yÔx' và xÔy' . Nên :

=> Om là tia đối với On

Ta có : \(\hept{\begin{cases}\widehat{yOm}=\widehat{mOx'}=\frac{\widehat{yOx'}}{2}\\\widehat{xOn}=\widehat{nOy'}=\frac{\widehat{xOy'}}{2}\end{cases}\left(1\right)}\)

Vậy => yÔm = nÔy' 

=> mÔx' = xÔn (2)

Từ (1) và (2) => x'Ôm đối đỉnh xÔn

19 tháng 4 2017

Hướng dẫn:

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

19 tháng 4 2017

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOyxOy′^

nên ˆxOtxOt′^ = ˆyOty′Ot′^ = 1212ˆxOyxOy′^

=> ˆxOtxOt^ + ˆxOtxOt′^ = 1212ˆxOyxOy^ + 1212ˆxOyxOy′^ = 1212(ˆxOyxOy^ +

22 tháng 7 2019

Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath

Tham khảo tại link trên!

6 tháng 5 2020

haaaaaaaaaaaaaaaaaaaaaaaa