Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

A B C D E F

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

B A E F C D

a, Xét \(\Delta BAD\)\(\Delta BED\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác \(\widehat{ABC}\))

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

\(\Rightarrow AB=EB\Rightarrow\) B nằm trên trung trực của AE (1)

\(AD=ED\Rightarrow\) D nằm trên trung trực của AE (2)

Từ (1) và (2) => BD là trung trực của AE

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\)

=> DF=DC.

Vậy DF=DC

c, Ta có: tam giác ADF vuông tại A=> cạnh huyền DF>AD (3)

Mà DF=DC (4)

Từ (3) và (4) => AD<DC

Vậy AD<DC

d, Ta có:

+) CA là đường cao từ C của tam giác BCF

+) FE là đường cao từ F của tam giác BCF

Mà CA và FE cắt nhau tại D => D là trực tâm của tam giác BCF

=> BD là đường cao từ B của tam giác BCF => \(BD\perp FC\) (5)

Mặt khác, BD là trung trực của AE \(\Rightarrow BD\perp AE\) (6)

Từ (5) và (6) => AE//FC

Vậy AE//FC

12 tháng 2 2018

bạn xem lại đề đi, hình như sai r đó

F làm sao là giao điểm của AB và DE được

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii

 

10 tháng 6 2015

10 năm sau thì cha vẫn hơn con 24 tuổi 

Ta có sơ đồ 10 năm sau :

Cha : |----|----|----|

Con : |----|

Tuổi con 10 năm sau là :

24: ( 3- 1 ) = 12 ( tuổi )

Tuổi con hiện nay là :

12 - 10 = 2  tuổi

Tuổi cha hiện nay là :

2 + 24 =26 ( tuổi )

           Đáp số : .......

10 tháng 6 2015

Sau 10 năm cha vẫn hơn con 24 tuổi.

=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)

Tuổi con hiện nay là: 12-10=2(tuổi)

Tuổi cha hiện nay là: 2+24=26(tuổi)

Đ/s:...

Bài này dễ như ăn cháo.

 

Bài 1) .

Ta có : AB =AC ( gt)

=> ∆ABC cân tại A 

=> B = C 

Xét ∆ ABE và ∆ ACD ta có 

AD = DE ( gt)

AB = AC ( gt)

B = C ( cmt)

=> ∆ABE = ∆ACD ( c.g.c)

=> EAB = DAC (dpcm)

b) Vì M là trung điểm BC

=> BM = MC 

Mà ∆ABC cân tại A ( cmt)

=> AM là trung tuyến ∆ABC 

=> AM là trung tuyến đồng thời là đường cao và phân giác ∆ABC 

Mà D,E thuộc BC 

AM vuông góc với DE 

Mà ∆ADE cân tại A ( AD = AE )

=> AM là đường cao đồng thời là phân giác và trung tuyến ∆ ADE 

=> AM là phân giác DAE 

c) Vì AM là phân giác DAE 

=> DAM = EAM = 60/2 = 30 độ

= > Mà AM vuông góc với DE (cmt)

=> AME = AMD = 90 độ

=> AME + MAE + AEM = 180 độ

=> AEM = 180 - 90 - 30 = 60 độ

Mà ∆ADE cân tại A 

=> ADE = AED = 60 độ

Bài 2)

Trong ∆ABC có A = 90 độ

=> BAC = 90 độ :))))))

14 tháng 6 2017

Hình vẽ:

A C B E K D

a/ Xét 2Δ vuông:ΔACE và ΔAKE có:

AE: chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

=> ΔACE = ΔAKE (ch-gn)

=> AC = AK (đpcm)

b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)

\(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)

=> \(\widehat{KAE}=\widehat{B}=30^o\)

=> \(\Delta EAB\) cân tại E

mà EK _l_ AB (gt)

=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)

=> KA = KB (đpcm)

c/ Xét \(\Delta EAB\) có:

EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)

AC _l_ BE ké dài (gt)

=> EK, BD, AC đồng quy tại 1 điểm (đpcm)

14 tháng 6 2017

đáp án ở đây bạn nha trừ câu c):

https://hoc24.vn/hoi-dap/question/59956.html