Cho tam giác ABC vuông ở C, có góc A bằng 600, tia phân giác của góc BAC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

A B C D K E

a, Ta có: góc EAB=góc EBA(=30độ)

mà góc AKE=góc BKE(=90độ)

=> góc AEK=góc BEK

Xét tam giác AKE và tam giác BKE ta có:

góc AKE=góc BKE(=90độ); KE:chung; góc AEK=góc BEK(cmt)

Do đó tam giác AKE=tam giác BKE(g.c.g)

=> AK=BK(cặp cạnh tương ứng) (đpcm)

b, Xét tam giác ABC vuông tại C và tam giác BAD vuông tại D ta có:

AB: cạnh chung; góc ABC=góc BAD(=30độ)

Do đó tam giác ABC=tam giác BAD(cạnh huyền - góc nhọn)

=> BC=AD(cặp cạnh tương ứng)(đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

mình cảm ơn bạn nhiều

10 tháng 6 2017

C A B E K D

10 tháng 6 2017

B) Ta có : góc CBA + góc BAC = 90 độ [ tam giác ABC vuông tại C ]
\Rightarrow góc CBA + 60 độ = 90 độ - 30 độ = 30 độ
mà góc KAE = 30 độ
Vậy góc CBA = góc KAE = 90 độ

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)

Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)

ˆKEB=60o

Xét hai tam giác vuông ΔAEK và ΔKEB có:

ˆAEK=ˆKEB=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90o

⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)

Xét hai tam giác vuông ΔABC và ΔABD có:

ABAB chung

ˆBAC=ˆABD=60o ( gt + cmt)

ˆDAB=ˆABC=30o (g.c.g)

⇒ΔABC=ΔABD

⇒AD=BC (hai cạnh tương ứng)

image

14 tháng 7 2021

a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o

⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)

Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)

ˆKEB=60oKEB^=60o

Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:

ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)

EKEK chung

ˆEKB=ˆEKA=90oEKB^=EKA^=90o

⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)

⇒AK=KB⇒AK=KB (hai cạnh tương ứng)

b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)

Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:

ABAB chung

ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)

ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)

⇒ΔABC=ΔABD⇒ΔABC=ΔABD

⇒AD=BC⇒AD=BC (hai cạnh tương ứng)

image

30 tháng 4 2016

1) 

Ta có : 

x2 - 2x = 0 

=) x ( x- 2 ) = 0

  • x = 0
  • x - 2 = 0 =) x = 2

Vậy x = { 0 ; 2 )

30 tháng 4 2016

Ta có : x 2 - 2x = 0

=> x ( x- 2 ) = 0

x = 0

x - 2 = 0

=> x = 2 Vậy x = { 0 ; 2 )

3 tháng 5 2016

A)Ta co AE la tia phan giác cua góc BAC(gt)

=>CAE=EAB=BAC:2=60:2=30(1)

Ta lai co góc B=90-A(2 góc phu nhau)

=>B=90-60=30(2)

Tu (1) va (2)=>tam giác AEB can tai E

=>EA=EB

Xét 2 tam giác vuong AKE va BKE co

EA=EB(cmt)

Góc EAB=góc EBK(cmt)

=>tam giác AKE=tam giác BKE(Ch-gn)

=>AK=BK

B)Xét 2 tam giác vuong ADB va BCA co

AB la canh chung

Góc EAB=góc EBA(cmt)

=>tam giác ADB=tam giác BCA

=>AD=BC

19 tháng 4 2016

hjk..lk

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath

b) Xét tam giác vuông ACB và tam giác vuông BDA có:

Cạnh AB chung

\(\widehat{ABC}=\widehat{BAD}\left(=30^o\right)\)

\(\Rightarrow\Delta ACB=\Delta BDA\)  (Cạnh huyền góc nhọn)

\(\Rightarrow AD=BC\)

7 tháng 3 2018

sorry I don' nt

17 tháng 2 2017

hình bạn tự vẽ nhé

xét tam giác AEC và tam giác AEK có

AE là cạnh huyền chung

góc CAE = góc KAE ( phân giác )

do đó tam giác AEC = tam giác AEK ( cạnh huyền - góc nhọn )

suy ra AK = AC ( 2 cạnh tương ứng )

b) xét tam giác ADB và tam giác BCA có

góc ABC = góc DAB = 30 độ ( bn có thể hiểu được)

AB là cạnh huyền chung 

do đó tam giác ADB = tam giác BCA ( cạnh huyền - góc nhọn )

suy ra AD = BC ( 2 cạnh tương ứng )

c) tam giác ACK có AC = AK (cmt)

suy ra tam giác ACK cân tại A

mà góc A = 60 độ suy ra tam giác ACK đều

8 tháng 5 2015

Câu a bạn Quỳnh Như giải sai rồ

Xét tg ACE vuông tại c và tg AKE vuông tại K,ta có:

AE là cạnh chung

góc CAE = góc KAE ( AE là tia phân giác)

Vậy tam giác ACE = tg AKE ( trường hợp cạnh huyền góc nhọn trong tg vuông)

=> AC=AK 
 

 

25 tháng 4 2017

tớ làm câu c nhé

vì ACE=90 độ 

suy ra AE>AC(1)

vì KA=KB(câu b)

ma EKvuong góc AB

suy ra tam giac AEB cân tai E

suy ra EA=EB(2)

Từ (1) va (2)

suy ra EB>AC