Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
A B C M E minh họa thôi --
a, Xét tam giác ABM và tam giác ACM ta có :
AB = AC ( gt )
AM _ chung
BM = MC ( M là trung điểm )
=> tam giác ABM = tam giác ACM ( c.c.c )
b, Xét tam giác BME và tam giác CMA ta có :
ME = MA ( gt )
^BME = ^CMA ( đđ )
BM = MC ( M là trung điểm )
=> ^BEM = ^CAM ( 2 góc tương ứng )
mà ^BEM và ^CAM ở vị trí so le trong
=> AC // BE
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
a/ Xét tam giác BEM và tam giác CFM có:
góc BEM = góc CFM = 900 (GT)
BM = MC (AM là trung tuyến t/g ABC)
góc B = góc C (t/g ABC cân)
=> tam giác BEM = tam giác CFM
b/ Ta có: AB = AC (t/g ABC cân)
BE = CF (t/g BEM = t/g CFM)
=> AE = AF
Xét hai tam giác vuông AEM và AFM có:
AE = AF (cmt)
AM: cạnh chung
=> tam giác AEM = tam giác AFM
=> ME = MF
Ta có: AE = AF; ME = MF
=> AM là trung trực của EF
c/ Xét hai tam giác vuông ABD và ACD có:
AB = AC (GT)
AD: cạnh chung
=> tam giác ABD = tam giác ACD
=> BD = CD
Ta có: AB = AC; BD = CD
=> AD là trung trực của EF
Ta có: AM là trung trực của EF
AD là trung trực của EF
=> AM trùng AD
Vậy A;M;D thẳng hàng.
---> đpcm.
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
b: Xét ΔDCH và ΔDBA có
\(\widehat{DCH}=\widehat{DBA}\)(hai góc so le trong, CH//AB)
DC=DB
\(\widehat{CDH}=\widehat{BDA}\)(hai góc đối đỉnh)
Do đó: ΔDCH=ΔDBA
=>CH=BA
Xét tứ giác ABHC có
AB//HC
AB=HC
Do đó: ABHC là hình bình hành
=>AC//BH
c: H là trung điểm của CK
=>CH=HK
mà CH=AB
nên AB=KH
Xét tứ giác ABKH có
AB//KH
AB=KH
Do đó: ABKH là hình bình hành
=>AK cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AK
=>A,M,K thẳng hàng