(Hà Tĩnh)

Cho phương trì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

a) Thay m = 2 vào phương trình ta có

       <=>     x2 - 4x  +  4  = 0

       <=>    x2 - 2.2x  + 22  = 0

       <=>    (x  - 2)2      =  0

       <=>    x  - 2   =  0 

       <=>     x   =  2

 Vậy tập ngiệm của phương trình là  S ={2}

             Xin lỗi đây là giới hạn của em

20 tháng 3 2021

a, Thay m = 2 vào phương trình trên ta được : 

\(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy với m = 2 thì x = 2 

b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=4\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)

\(x_1^2+x_2^2=3m+6\)

mà \(x_1+x_2=4\Leftrightarrow\left(x_1+x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2=16-2x_1x_2\)

hay \(16-2\left(m+2\right)=3m+6\Leftrightarrow16-2m-4=3m+6\)

\(\Leftrightarrow6=5m\Leftrightarrow m=\frac{6}{5}\)

21 tháng 3 2021

b,

Trước tiên để pt có hai nghiệm phân biệt thì:

Δ=22(m+2)>0m<2Δ′=22−(m+2)>0⇔m<2

Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:

{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2

Khi đó:

x21+x22=3(x1+x2)x12+x22=3(x1+x2)

(x1+x2)22x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)

422(m+2)=3.4⇔42−2(m+2)=3.4

m+2=2m=0⇔m+2=2⇒m=0 (thỏa mãn)

Vậy m=0

20 tháng 3 2021

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)

Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)

\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)

\(x_1^2+x_2^2=3x_1x_2-1\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)

hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)

\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

20 tháng 3 2021

a, Thay m = 3 vào phương trình trên ta được : \(PT\Leftrightarrow x^2-3x-4=0\)

Ta có : \(\Delta=9+16=25>0\)

phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{3-5}{2}=-1;x_2=\frac{3+5}{2}=4\)

Vậy với m = 3 thì x = -1 ; 4 

b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)

Ta có : \(x_1\left(x_2^2+1\right)+x_2\left(x_1^2+1\right)>6\)

\(\Leftrightarrow x_1x_2^2+x_1+x_2x_1^2+x_2>6\)

\(\Leftrightarrow-4x_2+m-4x_1>6\)

\(\Leftrightarrow-4\left(x_2+x_1\right)+m>6\)

\(\Leftrightarrow-3m>6\Leftrightarrow m< -2\)

19 tháng 5 2023

m<2

19 tháng 5 2023

Đáp số: �=−3m=3

21 tháng 3 2021

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=1\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=m^2\Leftrightarrow x_1^2+x_2^2=m^2-2x_1x_2=m^2-2\)

hay \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow m^2-2+2m=0\)

Ta có : \(\Delta=4+8=12\)

\(x_1=\frac{-2-\sqrt{12}}{2};x_2=\frac{-2+\sqrt{12}}{2}\)

15 tháng 5 2021

m<-2hoặcm>2

Ta có: m2+2m-2=0<=>(m+1)2=3

<=>m=-1+\(\sqrt{3}\) (loại) ;      m=-1-\(\sqrt{3}\) (TM) 

20 tháng 3 2021

    a) Thay m = -12 vào phương trình ta có 

                    x2 + 5x – 14 = 0 

           <=>  x2 + 7x  - 2x  - 14 = 0 

           <=>  (x2 + 7x ) - (2x  + 14) = 0

           <=>   x(x + 7) - 2(x  +  7) = 0

           <=>   (x  -  2)( x  +  7)  =  0

           <=>   x - 2 = 0    hoặc  x  +  7  =  0

           <=>   x  =  2        hoặc   x  =  -7

          Vậy tập nghiệm của phương trình là  S={-7  ; 2  }

                   Em chỉ iết làm câu này câu sau em xin lỗi!

20 tháng 3 2021

a, Thay m =-12 vào phương trình trên ta được : 

\(PT\Leftrightarrow x^2+5x-14=0\)

Ta có : \(\Delta=25-4\left(-14\right)=25+56=81>0\)

Vậy ta có 2 nghiệm phân biệt 

\(x_1=\frac{-5-9}{2}=-7;x_2=\frac{-5+9}{2}=2\)

Vậy với m = -12 thì x = -7 ; 2 

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{-5}{2}\\x_1x_2=\frac{c}{a}=\frac{m-2}{2}\end{cases}}\)

Ta có : \(\frac{1}{x_1-1}+\frac{1}{x_2-1}=2\)ĐK : \(x_1\ne1;x_2\ne1\)

Gọi \(x_1=a;x_2=b\)( em đặt cho dễ viết thôi nhé )

\(\frac{1}{a-1}+\frac{1}{b-1}=2\)

\(\Leftrightarrow\frac{b-1+a-1}{\left(a-1\right)\left(b-1\right)}=\frac{2\left(a-1\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}\)

\(\Rightarrow a+b-2=2\left(ab-a-b+1\right)\)

\(\Leftrightarrow a+b-2=2\left[ab-\left(a+b\right)+1\right]\)

hay \(-\frac{5}{2}-2=2\left(\frac{m-2}{2}+\frac{5}{2}+1\right)\)

\(\Leftrightarrow\frac{-9}{2}=2\left(\frac{m+5}{2}\right)\Leftrightarrow\frac{-9}{2}=\frac{2m+10}{2}\)

\(\Rightarrow2m+10=-9\Leftrightarrow m=-\frac{19}{2}\)