Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy
Mình chỉ giải c thôi nhé :) Phần a, b nếu ai muốn biết hỏi @Nấm Chanel
A B C H E F K O I
Có \(\widehat{HEA}=\widehat{BAC}=90^o\) nên \(EH\text{//}AC\) hay \(EH\text{//}FK\)
Đồng thời tứ giác \(EHFA\) có 3 góc vuông nên là hình chữ nhật, tức EH = FA ( 2 cạnh đối ), mà AF = FK ( giả thiết ) nên EH = FK
Từ đó suy ra tứ giác EHKF là hình bình hành nên EK cắt HF tại trung điểm mỗi đường, hay I là trung điểm EK (1)
Đồng thời hình chữ nhật EHFA có hai đường chéo EF và AH cắt nhau tại O, nên O là trung điểm EF ( tính chất hình chữ nhật ) (2)
(1)(2)\(\Rightarrow\)OI là đường trung bình \(\Delta EKF\) , suy ra OI // FK, hay OI // AC
Vậy ...
a) Xét \(\Delta\)ABC có: BF là trung tuyến;CF là trung tuyến
=> F trung điểm AB;E trung điểm AC
Do đó => EF là đường trung bình của \(\Delta\)ABC
=> EF=1/2BC;EF//BC (1)
Lại có: M trung điểm BG;N trung điểm CG (gt)
=> MN là đường trung bình của \(\Delta\)GBC
=> MN=1/2BC;MN//BC (2)
Từ (1) và (2) => FE=MN;FE//MN
=>MNEF là hbh ( 2 cạnh đối // và = nhau)
b) Ta có MNEF là hbh
Để MNEF là hcn thì ME_|_ EF
Mặt khác: ME_|_ EF
EF//BC ( EF đường tb)=>FG//BC
(ME là đường tb vì M trung điểm BG;BE trung tuyến)=>ME//AF=>MG//AG
Nên: AF_|_BC
=> ^B=^C=90 độ
=> ABC cân thì MNEF là hcn
Để MNEF là hình thoi thì EF=FM
Vì EF là đường tb của t/gABC => EF=1/2BC
MF là đường tb của t/gBFE=>MF=1/2FE
=> G là trọng tâm của t/gABC
=> AG=2/3BC
Nếu có điểm = AG thì đánh ở giữa BC ( o chắc )
=> MNEF là hcn thì AG=2/3BC
a)
Trong tam giác BAC có :
b) gọi D là giao của MA và CQ.
Chúc bạn học tốt!