Bài 5. (1 điểm)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 11 2024

Diện tích phần tô màu là:

\(\dfrac{1}{4}.\pi.4^2-\dfrac{1}{2}.\pi.2^2=2\pi\left(cm^2\right)\)

24 tháng 2 2022

lá cờ của Liên Xô nhé

HT

tích giúp mình với

24 tháng 2 2022

TL: 

B nhé 

@@@@@@@@@ 

Bạn k cho mình nha

11 tháng 6 2017

12 +  6 = 18

11 tháng 6 2017

12+6=18

DD
21 tháng 10 2021

\(y=3x+m\)(*) 

1) a) Đồ thị hàm số (*) đi qua \(A\left(-1,3\right)\)nên \(3=3.\left(-1\right)+m\Leftrightarrow m=6\).

b)  Đồ thị hàm số (*) đi qua \(B\left(-2,5\right)\)nên \(5=3.\left(-2\right)+m\Leftrightarrow m=11\).

2) Đồ thị hàm số (*) cắt trục hoành tại điểm có hoành độ \(3x+m=0\Leftrightarrow x=-\frac{m}{3}\)

Suy ra \(-\frac{m}{3}=-3\Leftrightarrow m=9\).

3) Đồ thị hàm số (*) cắt trục tung tại điểm có tung độ \(y=3.0+m=m\)

suy ra \(m=-5\).

15 tháng 5 2021

Hình tự vẽ nha

a) Vì A,B,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ABD}=90^0\)

Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)

Xét tứ giác  ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)

mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF

\(\Rightarrow ABEF\)nội tiếp ( dhnb )

b)  Vì A,C,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ECD}=90^0\) 

Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC

\(\Rightarrow EFDC\)nội tiếp

\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )

Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)

=> AC là phân giác góc BCF 

DD
28 tháng 6 2021

\(P=\left(1+2a\right)\left(1+2bc\right)\le\left(1+2a\right)\left(1+b^2+c^2\right)=\left(1+2a\right)\left(2-a^2\right)\)

\(=\frac{3}{2}\left(\frac{2}{3}+\frac{4}{3}a\right)\left(2-a^2\right)\le\frac{3}{8}\left(\frac{8}{3}+\frac{4}{3}a-a^2\right)^2=\frac{3}{8}\left[\frac{28}{9}-\left(a-\frac{2}{3}\right)^2\right]^2\)

\(\le\frac{3}{8}.\left(\frac{28}{9}\right)^2=\frac{98}{27}\)

Dấu \(=\)khi \(\hept{\begin{cases}b=c\\\frac{2}{3}+\frac{4}{3}a=2-a^2,a-\frac{2}{3}=0\\a^2+b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2}{3}\\b=c=\frac{\sqrt{\frac{5}{2}}}{3}\end{cases}}\).

Vậy \(maxP=\frac{98}{27}\).

28 tháng 6 2021

Ta co : \(P=2a+2bc+2abc+1\)

Ap dung bdt Co-si : \(P\le a^2+b^2+c^2+2abc+2=2abc+3\)

Tiep tuc ap dung Co-si : \(1=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}< =>\sqrt[3]{a^2b^2c^2}\le\frac{1}{3}\)

\(< =>a^2b^2c^2\le\frac{1}{27}< =>abc\le\frac{1}{\sqrt{27}}\)

Khi do : \(2abc+3\le2.\frac{1}{\sqrt{27}}+3=\frac{2}{\sqrt{27}}+3\)

Suy ra \(P\le a^2+b^2+c^2+2abc+2\le\frac{2}{\sqrt{27}}+3\)

Dau "=" xay ra khi va chi khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Vay Max P = \(\frac{2}{\sqrt{27}}+3\)khi a = b = c = \(\frac{1}{\sqrt{3}}\) 

p/s : khong biet dau = co dung k nua , minh lam bay do