Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần a,b nha
a)Xét tứ giác MDHE, có:
MDHˆ=900MDH^=900
Mˆ=900M^=900
HEMˆ=900HEM^=900
=> Tứ giác MDHE là hình chữ nhật
b) Gọi giao điểm của MH là DE là O MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường
=> OH=OE
Xét tam giác EOH, có:
OH=OE(CMT)
=> Tam giác EOH cân tại O
=> H1ˆ=E1ˆH1^=E1^
Xét DEHP vuông tại E ,có:
A là trung điểm PH
=> AE = AH.
=> H2ˆ=E2ˆH2^=E2^
=> AEOˆ=AHOˆAEO^=AHO^ =900=900
Từ đó góc AEO = 900
hay tam giác DEA vuông tại E.
a: Xét tứ giác MDHE có
\(\widehat{MDH}=\widehat{MEH}=\widehat{EMD}=90^0\)
Do đó: MDHE là hình chữ nhật
A)\(\text{Tứ giác MDHE có ba góc vuông nên là hình chữ nhật.}\)
B)\(\text{MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.}\)
\(\text{Gọi O là giao điểm của MH và DE.}\)
Ta có: OH = OE.=> góc H1 = góc E1
\(\text{DEHP vuông tại E có A là trung điểm PH suy ra: AE = AH.}\)
=> góc H2 = góc E2
=> góc AEO và AHO bằng nhau mà góc AHO = 900.
\(\text{Từ đó góc AEO = 900 hay tam giác DEA vuông tại E.}\)
C)DE = 2EA <=> OE = EA <=> tam giác OEA vuông cân
<=> góc EOA = 450 <=> góc HEO = 900
<=> MDHE là hình vuông
<=> MH là phân giác của góc M mà MH là đường cao nên tam giác MNP vuông cân tại M.
HÌNH THÌ Ở TRONG THỐNG KÊ HỎI ĐÁP NHA
Câu hỏi của Ţɦôйǥ ßáø - Toán lớp 8 - Học toán với OnlineMath
Hình bn kham khảo ở : Imgur: The magic of the Internet ( vào thống kê )
a, Tứ giác MDHE có ba góc vuông nên là hình chữ nhật.
b,MDHE là hình chữ nhật nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Gọi O là giao điểm của MH và DE.
Ta có: OH = OE.=> góc H1 = góc E1
DEHP vuông tại E có A là trung điểm PH suy ra: AE = AH.
=> góc H2 = góc E2
=> góc AEO và AHO bằng nhau mà góc AHO = 900.
Từ đó góc AEO = 900 hay tam giác DEA vuông tại E.
c, DE = 2EA <=> OE = EA <=> tam giác OEA vuông cân
<=> góc EOA = 450 <=> góc HEO = 900
<=> MDHE là hình vuông
<=> MH là phân giác của góc M mà MH là đường cao nên tam giác MNP vuông cân tại M.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC