Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Ox\(\perp\)Oy
mà \(A\in Ox,B\in Oy\)
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
O(0;0); A(-2;0); B(0;2)
\(OA=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{4}=2\)
\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=2\)
ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)
c: Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
(d): y=x+2
=>a=1
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
Cho hình vẽ
A B C D I F
Tam giác BEC cân và có \(\widehat{BEC}=150^o\) \(\Rightarrow\) tam giác BEC cân tại E
Gọi H là hình chiếu của E lên AD \(\Rightarrow\) H là trung điểm AD và HE \(=\) d E; AD \(=\) 3
Đặt cạnh hình vuông là \(AB=x\)
Tam giác BEC cân tại E có \(\widehat{BEC}=150^o\Rightarrow\widehat{BEC}=15^o\) . Gọi I là trung điểm của \(BC\Rightarrow BI=\frac{x}{2};EI=x-3\)
Tam giác BIE vuông tại I có góc \(\widehat{EBI}=15^o\Rightarrow tan15^o=\frac{EI}{BI}=\frac{2x-6}{x}\)
\(\Rightarrow2-\sqrt{3}=\frac{2x-6}{x}\Leftrightarrow x=2\sqrt{3}\)
Phương trình đường thẳng EH qua điểm E và vuông góc với \(AD\Rightarrow EH\div4x+3y+4=0\)
Đường thằng \(AB\\ EH\Rightarrow AB\) có dạng \(''d''\div4x+3y+a=0\)
Ta có d \(''E,AB''=\frac{⊥a-4⊥}{5}=BI=\sqrt{3}\Leftrightarrow a=4⊥5\sqrt{3}\)
Phương trình đường thẳng AB là \(''d''\div4x+3y+4⊥5\sqrt{3}=0\)
P/s; Bộ khó lắm à .
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}-\dfrac{3}{4}x+\dfrac{5}{2}=\dfrac{4}{5}x+\dfrac{7}{2}\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}x=1\\y=\dfrac{-3}{4}x+\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=\dfrac{-3}{4}\cdot\dfrac{5}{7}+\dfrac{5}{2}=\dfrac{55}{28}\end{matrix}\right.\)
Đề không rõ ràng. Bạn xem lại.