Cho tam giác ABC vuông tại A có D, E lần lượt là trung điểm của các c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

a: Xét ΔABC có 

D là trung điểm của AC

E là trung điểm của BC

Do đó; DE là đường trung bình

=>DE//AB

Xét tứ giác ABED có DE//AB

nên ABED là hình thang

mà \(\widehat{DAB}=90^0\)

nên ABED là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC
nên AECF là hình thoi

c: Đề sai rồi bạn

10 tháng 1 2022

a, xét tam giác ABC có đường t/b ED:

=>ED//AB

xét tứ giác ABED có :

ED//AB 

BAC = 90\(^o\)

vậy ABED là hình thang vuông.

b, vì F đối xứng với E qua D nên:

ED=DF(1)

vì D là trung điểm AC nên:

AD=DC(2)

từ (1) và (2) suy ra :

tứ giác AECF là hình thoi.

c,vì ED //AB 

mà AB vuông góc Ac

=>ED vuông góc AC

<=>EDA là góc vuông 

xét tứ giác ABEH có :

\(EHA=BAC=EDA=90^o\)

vậy ABEH là hình chữ nhật.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

16 tháng 11 2018

B D V N M K E C

a) Xét tứ giác ADME có :

Góc A = 90( tam giác ABC vuông tại A )

Góc D = 900 ( MD vuông góc AB )

Góc E = 900 ( ME vuông góc AC )

Do đó tứ giác ADME là hình chữ nhật

b) Chứng minh đúng D, E là trung điểm của AB ; AC

Chứng minh đúng DE là đường trung bình của tam giác 

ABC nên DE song song và \(DE=\frac{BC}{2}\)

Cho nên DE song song với BM và DE = BM

=> Tứ giác BDME là hình bình hành

c) Xét tứ giác AMCF có :

E là trung điểm MF ( vì M đối xứng với F qua E )

Mà E là trung điểm của AC ( cmt )

Nên tứ giác AMCF là hình bình hành 

Ta có AC vuông góc MF ( vì ME vuông góc AC )

Do đó tứ giác AMCF là hình thoi

d) Chứng minh đúng tứ giác ABNE là hình chữ nhật

Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE

trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE

nên \(KO=\frac{BE}{2}\)

mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)

trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN

nên tam giác AKN vuông tại A 

Vậy AK vuông góc KN

5 tháng 12 2018

$\in $