tìm GTLN của biểu thức 

D=2023-8x+2y+4xy-y2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

\(D=2023-8x+2y+4xy-y^2-5x^2\)

\(=-\left(y^2+5x^2-4xy-2y+8x-2023\right)\)

\(=-\left(y^2-2.y.\left(2x+1\right)+\left(2x+1\right)^2-\left(2x+1\right)^2+5x^2+8x-2023\right)\)

\(=-\left[\left(y-2x-1\right)^2-4x^2-4x-1+5x^2+8x-2023\right]\)

\(=-\left[\left(y-2x-1\right)^2+x^2+4x-2024\right]\)

\(=-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]+2028\)

Vì \(-\left[\left(y-2x-1\right)^2+\left(x+2\right)^2\right]\le0\forall x,y\)

\(MaxD=2028\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

30 tháng 6 2019

A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39

Vậy GTLN của A là 39 khi x = -6

B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8

Vậy GTLN của B là 8 khi x = 

~Hok tốt~

30 tháng 6 2019

Tìm min mà bn

7 tháng 7 2016

đề sai ko thể nào là GTNN

7 tháng 7 2016

Lớn nhất

27 tháng 6 2019

Ta có: \(P=\left[-\left(4x^2-2.2x.y+y^2\right)-6\left(2x-y\right)-9\right]-\left(x^2-4x+4\right)-15\)

\(=-\left[\left(2x-y\right)^2+2.\left(2x-y\right).3+9\right]-\left(x-2\right)^2-15\)

\(=-\left(2x-y+3\right)^2-\left(x-2\right)^2-15\le-15\)

Dấu "=" xảy ra khi x = 2\(\hept{\begin{cases}x=2\\y=2x+3=7\end{cases}}\)

Vậy...

30 tháng 8 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+2x-x-1\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)

\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)

\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)

\(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)

\(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\)

\(\left(2x-y\right)^2\ge0\) với mọi x và y

\(y^2\ge0\) với mọi y

\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)

\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(C=5x-3x^2+2\)

\(C=-\left(3x^2-5x-2\right)\)

\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)

\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)

\(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

\(D=-8x^2+4xy-y^2+3\)

\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(D=-\left(2x-y\right)^2-4x^2+3\)

\(-\left(2x-y\right)^2\le0\) với mọi x và y

\(-4x^2\le0\) với mọi x

\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y

\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(E=x^2-8x+38\)

\(E=x^2-2.x.4+16+22\)

\(E=\left(x-4\right)^2+22\)

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x

\(\Rightarrow Emin=22\Leftrightarrow x=4\)

\(F=6x-x^2+1\)

\(F=-\left(x^2-6x-1\right)\)

\(F=-\left(x^2-2.x.3+9-9-1\right)\)

\(F=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-3\right)^2+10\le10\)

\(\Rightarrow Fmax=10\Leftrightarrow x=3\)

27 tháng 8 2020

Bài làm:

Ta có: \(E=5x^2+y^2-4xy+8x-6y+3\)

\(E=\left(4x^2-4xy+y^2\right)+\left(12x-6y\right)+9+\left(x^2-4x+4\right)-10\)

\(E=\left(2x-y\right)^2+6\left(2x-y\right)+9+\left(x-2\right)^2-10\)

\(E=\left(2x-y+3\right)^2+\left(x-2\right)^2-10\ge-10\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+3\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=7\end{cases}}\)

Vậy Min(E) = -10 khi x = 2, y = 7

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)