Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=3+9
=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3\cdot9=27\)
=>\(AH=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{3\cdot12}=6\left(cm\right)\\AC=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b: \(tan^2C+cot^2C\)
\(=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{AB}{AC}\right)^2\)
\(=\dfrac{AC^2}{AB^2}+\dfrac{AB^2}{AC^2}\)
\(=\dfrac{HC\cdot BC}{HB\cdot BC}+\dfrac{HB\cdot BC}{HC\cdot CB}\)
\(=\dfrac{HC}{HB}+\dfrac{HB}{HC}\)
bạn tự vẽ hình nhá!
giải
a) ÁP DỤNG ĐỊNH LÝ PI-TA GO-VÀ \(\Delta\)VUÔNG ABC TA CÓ:
\(AB^2\)\(+\)\(AC^2\)\(=\)\(BC^2\)
\(\Rightarrow\)\(3^2\)\(+\)\(4^2\)\(=\)\(BC^2\)
\(\Rightarrow9+16=BC^2\)
\(\Rightarrow25=BC^2\)
\(\Rightarrow5=BC\)
ÁP DỤNG HỆ THỨC 3 VÀO \(\Delta\)ABC TA CÓ:
AB.AC=BC.CH\(\Rightarrow\)AH=\(\frac{AB.AC}{BC}\)=\(\frac{3.4}{5}\)=2,5
ÁP DỤNG HỆ THỨC LƯỢNG TRONG TAM GIÁC TA CÓ:
\(AB^2=BC.BH\)\(\Rightarrow BH=\frac{AB^2}{BC}\)=\(\frac{3^2}{5}=1,8\)
\(AC^2=BC\times CH\Rightarrow HC=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)
a, Xét tam giác ABH vuông tại H, đường cao HG
Ta có : \(NH^2=AB.BG\)( hệ thức lượng )
b, Xét tam giác AHC vuông tại H, đường cao HK
Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)
a,Áp dụng htl trong ΔABC có:
AB2=BH x BC⇒tính đc BH
BC=BH+HC⇒tính đc HC
htl có AH2=BH x CH⇒tính đc AH
b,Áp dụng htl trong ΔBHA có:
AH2=AD x AB
BH2=BD x AB
chia hai vế⇒đccm
c,Áp dụng htl trong ΔABC có:
AH x BC=AB x AC,AH2=BH x BC⇒AH4=BH2 x CH2(1)
htl trong ΔBHA có:
BH2=BD xAB(2)
htl trong ΔAHC có:
HC2=CE x AC(3)
nhân 2 vế (2) và (3) ta đc:
BH2 x HC2=BD x CE x AB x AC
từ (1)⇒AH4=BD x CE x BC x AH
⇒BD x CE x BC=AH4/AH=AH3
A B D E C H
a) Áp dụng định lý Pytago vào \(\Delta vuôngABC\), ta có:
\(AB^2+AC^2=BC^2\)\(\Rightarrow AC^2=BC^2-AB^2\)\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta vuôngABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4\left(cm\right)\)
Áp dụng hệ thức giữa cạnh học vuông và hình chiếu vào \(\Delta vuôngABC\), ta có:
\(AB^2=BC.HB\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)
Xét \(\Delta vuôngABC\), ta có:
\(HB+HC=BC\Rightarrow HC=BC-HB=10-6,4=3,6\left(cm\right)\)
b) Ta có \(\left\{{}\begin{matrix}AH^2=AB.AD\\BH^2=AB.BD\end{matrix}\right.\) (Áp dụng hệ thức giữa cạnh góc \(\perp\) và hình chiếu)
\(\Rightarrow\dfrac{AH^2}{BH^2}=\dfrac{AB.AD}{AB.BD}\)\(=\dfrac{AD}{BD}\)\(\left(đpcm\right)\)
c) Xét \(\Delta vuôngBHA\), ta có:
\(BH^2=DB.AB\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)
Xét \(\Delta vuôngAHC\), ta có:
\(CH^2=EC.AC\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta vuôngABC\), ta có:
\(AH^2=BH.CH\Rightarrow AH^4=BH^2.CH^2=DB.AB.EC.AC\)
Mặt khác \(AB.AC=AH.BC\)
\(\Rightarrow AH^4=BC.AH.DB.EC\Rightarrow AH^3=BC.DB.EC\left(đpcm\right)\)