giúp mik câu d với

Cho tam giác ABC vuông tại A (AB...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

a/

Xét tg vuông HAB và tg vuông ABC có

\(\widehat{HAB}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAB đồng dạng với tg ABC (g.g.g)

b/ Xét tg vuông ABC có

\(AB^2=HB.BC\)  (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\)

c/ Đề bài sai sửa thành HA.HB=HC.HD

Xét tg vuông HBD và tg vuông HAC có 

BD//AC (gt) \(\Rightarrow\widehat{HBD}=\widehat{HCA}\) (góc so le trong)

=> tg HBD đồng dạng với tg HAC 

\(\Rightarrow\dfrac{HD}{HA}=\dfrac{HB}{HC}\Rightarrow HA.HB=HC.HD\)

d/

Xét tg vuông HAC, nối HN có

AN=CN (gt) => \(HN=AN=CN=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg NHC cân tại N \(\Rightarrow\widehat{NHC}=\widehat{NCH}\) (góc ở đáy tg cân) (1)

Xét tg vuông HBD, nối HM có

BM=DM (gt) => \(HM=BM=DM=\dfrac{BD}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg MBH cân tại M => \(\widehat{MBH}=\widehat{MHB}\) (góc ở đáy tg cân) (2)

Mà BD//AC (gt) \(\Rightarrow\widehat{NCH}=\widehat{MBH}\) (góc sole trong ) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{NHC}=\widehat{MHB}\)

Mà \(\widehat{NHC}+\widehat{BHN}=\widehat{BDC}=180^o\)

 

\(\Rightarrow\widehat{MHB}+\widehat{BHN}=\widehat{MHN}=180^o\) => M; H; N thẳng hàng

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

DO đó:ΔHBA\(\sim\)ΔABC

b: \(HB=\dfrac{AB^2}{BC}=9\left(cm\right)\)

1 tháng 5 2022

mik cần câu d ákhocroi

8 tháng 5 2018

a)  Xét  \(\Delta AHC\)và   \(\Delta DHB\)có:

       \(\widehat{AHC}=\widehat{DHB}=90^0\)

      \(\widehat{HAC}=\widehat{HDB}\)(đối đỉnh)

suy ra:  \(\Delta AHC~\Delta DHB\) (g.g)

b)   Xét   \(\Delta ABC\)và    \(\Delta BDA\)có:

      \(\widehat{BAC}=\widehat{DBA}=90^0\)

     \(\widehat{ABC}=\widehat{BDA}\) (cùng phụ vs góc DBH)

suy ra:   \(\Delta ABC~\Delta BDA\)

\(\Rightarrow\)\(\frac{AB}{BD}=\frac{AC}{AB}\)

\(\Rightarrow\)\(AB^2=BD.AC\)

c)  \(\Delta HAC\)vuông tại  H  có  HN  là đường trung tuyến

\(\Rightarrow\)\(HN=AN=NC\)

\(\Rightarrow\)  \(\Delta NHC\)cân tại  N   \(\Rightarrow\) \(\widehat{NHC}=\widehat{NCH}\)

    Tương tự:   \(\widehat{MBH}=\widehat{MHB}\) 

mà   \(\widehat{MBH}=\widehat{HCN}\)(slt do BM // NC)

\(\Rightarrow\) \(\widehat{MHB}=\widehat{HCN}\)

mà   \(\widehat{HCN}=\widehat{NHC}\) (cmt)

\(\Rightarrow\)\(\widehat{MHB}=\widehat{NHC}\)

\(\Rightarrow\)\(\widehat{MHB}+\widehat{BHA}+\widehat{AHN}\)

    \(=\widehat{BHA}+\widehat{AHN}+\widehat{NHC}=180^0\)

Vậy  M, N, H thẳng hàng

26 tháng 6 2020

c) Chứng minh M, H, N thẳng hàng.

Từ câu b ta có : HA. HB = HC. HD \(\rightarrow\frac{HA}{HC}=\frac{HD}{HB}\)

Xét \(\Delta AHC\)và \(\Delta DHB\)

có: \(\frac{HA}{HC}=\frac{HD}{HB}\)(cmt)

       \(\widehat{AHC}=\widehat{DHB}\)(đối đỉnh hay cùng = 90 độ)

\(\Rightarrow\Delta AHC\)đồng dạng với \(\Delta DHB\)

\(\Rightarrow\frac{AC}{BD}=\frac{HC}{HB}\)

mà \(\frac{AC}{BD}=\frac{\frac{1}{3}AC}{\frac{1}{3}BD}=\frac{NC}{BM}\)

\(\Rightarrow\frac{HC}{HB}=\frac{NC}{BM}\)

Kết hợp với \(\widehat{NCH}=\widehat{MBH}\)(SLT do AC//BD theo câu b)

\(\Rightarrow\Delta NCH\)đồng dạng với \(\Delta MBH\)

\(\Rightarrow\widehat{CHN}=\widehat{BHM}\)

mà \(\widehat{CHN}+\widehat{NHB}=180\)độ

\(\Rightarrow\widehat{BHM}+\widehat{NHB}=180\)độ

\(\Rightarrow\)M, H, N thẳng hàng.

9 tháng 4 2021

góc BHM đối đỉnh với góc HNC nên bằng nhau đc không ạ

 

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm