Cho tổng : S=1/2^2 + 1/3^2 + ... + 1/99^2

C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{99^2}< \dfrac{1}{98\cdot99}=\dfrac{1}{98}-\dfrac{1}{99}\)

Do đó: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

=>\(S< 1-\dfrac{1}{99}\)

=>S<1

\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{99^2}>\dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(S>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(S>\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

Do đó: \(\dfrac{49}{100}< S< 1\)

5x.5x+1.5x+2<100.................00:224

                      Có 24 số 0

53x.51.52<1024:2224

53x.53<524

53x<524:53

53x<521

=>3x=21

     x=21:3

     x=7\(\in\)N

Vậy x=7

Chúc bn học tốt

1 tháng 7 2015

\(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)

Vậy \(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<1\)

7 tháng 5 2017

ta có:1/2.2+1/3.3+....+1/99.99>1/2.3+1/3.4+1/4.5+...1/99.100=1/2-1/3+1/3-1/4+...+1/99-1/100=1/2-1/100=49/100

=> S>49/100

 ^_^

7 tháng 5 2017

\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)

\(S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

\(\Rightarrow\frac{49}{100}< S\)

25 tháng 6 2020

\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{50}=1-\frac{1}{50}< 1\)

25 tháng 6 2020

S<A= 1/1.2+1/2.3+...+1/40.50  => A=1-1/2+1/2-1/3+1/3-...+1/49-1/50

                                                 => A=1-1/50 <1

                            Mà S<A<1 => S<1 =>(ĐPCM)

2 tháng 5 2015

minh chiu kho qua thong cam nha !!!!!!!!!!!!!! hi hi