Cho tam giác ABC có các đường trung tuyến AM, BN, CP cắt nhau tại G. Gọi K là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có

AM,CP,BN là trung tuyến

AM cắt CP cắt BN tại G

=>G là trọng tâm

=>BG=2/3BN; CG=2/3CP; AG=2/3AM

=>BK=KG=GN=1/3BN

=>GK=1/3BN; GM=1/3AM

Xet ΔBGC có BM/BC=BK/BG

nên MK//GC và MK/GC=BM/BC=1/2

=>MK=1/2GC=1/2*2/3*CP=1/3CP

26 tháng 2 2023

cám ơn bạn nhìu

 

26 tháng 3 2024

Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm                               a, Tính HM,PA,GB.                                 b, Chứng minh tam giác HPG cân

       

4 tháng 4 2016

mk pit làm phần a thui

vì AG=2GM 

+) AG=4 cm

=>4=2GM

=> MG=4:2=2 (cm)

+)gm+ag=am

+)mg=2 cm

+) ag=9cm

=>2+9=am

=> am=11 cm

tính độ dài đoạn cp và bn tương tự như trên

4 tháng 4 2016

cảm ơn rất nhiều ạ

6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm