Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E O F B M C N
a) Do tam giác ABC cân tại A có AM là trung tuyến nên AM là đường cao.
Xét tam giác vuông ABM có ME là trung tuyến ứng với cạnh huyền nên \(EA=EM\)
Tương tự FM = FA
Lại có tam giác ABC cân tại A nên AB = AC hay AE = AF. Suy ra AE = EM = MF = FA hay AEMF là hình thoi.
b) Xét tứ giác AMBN có EA = EB; EM = EN nên AMBN là hình bình hành.
Lại có \(\widehat{AMB}=90^o\Rightarrow\) AMBN là hình chữ nhật.
Xét tam giác ABC có E, F lần lượt là trung điểm của AB và AC nên EF là đường trung bình của tam giác.
Hay EF // BC
Vậy BEFC là hình thang. Lại có \(\widehat{EBC}=\widehat{FCB}\) nên BEFC là hình thang cân.
c) Do AMBN là hình chữ nhật nên NA song song và bằng BM. Suy ra NA cũng song song và bằng MC.
Xét tam giác ANMC có AN song song và bằng MC nên NACM là hình bình hành.
Vậy AM và NC cắt nhau tại trung điểm mỗi đường. Do O là trung điểm AM nên O là trung điểm NC.
d) Tứ giác AEMF là hình thoi. Để nó là hình vuông thì \(\widehat{EAF}=90^o\) hay tam giác ABC vuông cân tại A.
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a. Xét tam giác ABC có BM=MC; AI=IC
=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK
Xét tứ giác AKMI có IM//AK; IM=AK
=> AKMI là hbh
Do AB=AC=> 1/2AB=1/2AC=> AK=AI
Xét hbh AKMI có AK=AI
=> AKMI là hình thoi
b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN
=> AMCN là hbh
Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao
=> AMC=90*
Hbh AMCN có AMC=90*
=> AMCN là hcn
• Xét tam giác ABC có AK=BK; BM=MC
=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC
Xét tứ giác MKIC có KM//IC; KM=IC
=> MKIC là hbh
c. Do AMCN là hcn nên NAM=90*; AN=MC
Từ NAM=90*=> ANvgAM mà BMvgAM
=> AN//BM
Từ AN=MC mà MC=BM => AN=BM
Xét tứ giác ABMN có AN=BM; AN//BM
=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn
Mà E là trung điểm của AM
=> E là trung điểm của BN
d. Để AMCN là hình vuông thì AC vg MN
Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao
=> AMC vuông cân tại M => ACM=45*=ABM
=> tam giác ABC vuông cân tại A
sao mk lại
ghét toán hình
quáGame Play
hihi
chúc bn học gioi!
nhaE@@@@
a, có t.g ABC cân tại A có AM là đường trung tuyến
-> AM vuông góc với BC
Xet tg AMB
co KA=KB (GT)
-> MK=AK (=1/2AB)(1)
Chứng minh tương tự đối với tg AMC thì MI=AI (2)
lại có AB=AC
->AK=AI(3)
(1);(2);(3) -> AK=KM=MI=IA
-> tứ giác AKMI là hình thoi
b, co IA=IC
IM=IN (VI N đối xứng với M qua I)
-> Tứ giác AMCN là hình thoi
Mà AM vuông góc BC (theo a)
-> tứ giác AMCN là hình vuông
Xet tg ABC co KA=KB
IA=IC
-> KI là đường trung bình của tg ABC
-> KI//BC
KI=1/2 BC
Ma MC=1/2MC
-> tu giac KICM la hinh binh hanh
Bài 2:
a: Xet ΔABC có AD/AB=AF/AC
nen DF//BC và DF=1/2BC
=>BDFC là hình thang
mà góc B=góc C
nên BDFC là hình thang cân
b Xet ΔABC có
CE/CB=CF/CA
nên EF//AB và EF=AB/2
=>EF//AD và EF=AD
=>ADEF là hình bình hành
mà AD=AF
nen ADEF là hình thoi
c: Để ADEF là hình vuông thì góc BAC=90 độ
a)tứ giác AMBN có
I là trung điểm AB (gt)
I là trung điểm NM (N đx M qua I)
=> AMBN là HBH (vì là tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
có I là trung điểm AB (gt)
M là TĐiểm BC (AM là đường trung tuyến)
=> IM là đường trung bình tgiasc ABC (đnghĩa)
=> IM // AC IM = AC /2 (t/c đường trung bình)
IM // AC => IM vuộng AB (AC vuông AB )
hay NM vuông AB
HBH ABCD có 2 đường chéo vuông vs nhau=> ABCD là Hthoi (...)
b) có IM = AC/2 (cmcaau a).
=> IM = 6/2=3 (cm)
có I là Tđiểm NM (N đx M qua I)
=> NM = IM .2=6 (cm)
S hthoi AMBN = 1/2.6.4=12 (cm2 )
c) tam giác vuông ABC cần đk cân tại A để AMBN là Hvuông
a: Xét ΔCAB có BM/BC=BE/BA
nên ME//AC và ME=AC/2
=>ME//AF và ME=AF
=>AEMF là hình bình hành
mà AE=AF
nên AEMF là hình thoi
b: Xét tứ giác AMCN có
F là trung điểm chung của AC và MN
nên AMCN là hình bình hành
mà góc AMC=90 độ
nên AMCN là hình chữ nhật
=>AC=MN