Cho đường tròn tâm O có đ/kính AB. Trên cùng nửa mặt phẳng có bờ là đường thẳng AB, vẽ c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

A D C E V L O K B

25 tháng 4 2020

a.Vì  DC,DA là tiếp tuyến của (O) \(\Rightarrow DC=DA\)

Tương tự \(EC=EB\Rightarrow DE=DC+CE=AD+BE\)

Mà EC,EB là tiếp tuyến của (O) \(\Rightarrow EC\perp OC,EB\perp OC\)

=> C,O,B,E cùng thuộc một đường tròn đường kính OE

b ) Ta có : EB,EC là tiếp tuyến của (O) \(\Rightarrow EO\perp CB=L\)

Mà VL là đường kính của (O)

\(\Rightarrow LK.LV=CL^2=LO.LE\)

c.Ta có :

\(\widehat{VCL}=\widehat{CBV}=\widehat{ECV}\) vì EC là tiếp tuyến của (O)

\(\Rightarrow CV\) là phân giác \(\widehat{ECL}\)

\(\Rightarrow\frac{VL}{VE}=\frac{CL}{CE}\)

Lại có : \(\Delta CLE~\Delta OCE\left(g.g\right)\)

\(\Rightarrow\frac{CL}{CE}=\frac{OC}{OE}\)

Lại có : \(OC^2=OL.OE\Rightarrow\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{KV}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{2R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL+VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{R}{R}=1\)

\(\Rightarrow\frac{1}{VL}-\frac{1}{VE}=\frac{2}{KV}\)

 
 
 
16 tháng 7 2016

Giải nhanh hộ mình

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF