Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
Bài 1 rút gọn bc tự làm :
\(B=\dfrac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\dfrac{3x^3-3y^2-4y^2+4y+y-1}{2y^3-2y^2+y^2-y+3y-3}\)
\(B=\dfrac{3y^2\left(y-1\right)-4y\left(y-1\right)+\left(y-1\right)}{2y^2\left(y-1\right)+y\left(y-1\right)-3\left(y-1\right)}\)
\(B=\dfrac{\left(3y^2-4y+1\right)\left(y-1\right)}{\left(2y^2+y-3\right)\left(y-1\right)}\)
\(B=\dfrac{3y^2-3y-y+1}{2y^2-2y+3y-3}=\dfrac{3y\left(y-1\right)-\left(y-1\right)}{2y\left(y-1\right)+3\left(y-1\right)}\)
\(B=\dfrac{\left(3y-1\right)\left(y-1\right)}{\left(3y+2\right)\left(y-1\right)}=\dfrac{3y-1}{3y+2}\)
Bài 2 )
a ) \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2+2x\dfrac{1}{x}+\dfrac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}=1\)
b ) \(\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+\dfrac{3}{x}+3x=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(\dfrac{1}{x}+x\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Bài 2:
Bài 1:
\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)
\(\left(a+b+c\right)=\dfrac{1}{2}\Leftrightarrow\left(a+b+c\right)^2=\dfrac{1}{4}\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=\dfrac{1}{4}\)
Ta có: \(ab+bc+ac=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+bc+ac\right)=\dfrac{1}{4}-\dfrac{1}{6}=\dfrac{1}{12}\)
\(a^2+b^2+c^2=\dfrac{1}{6}-\left(ab+bc+ac\right)=\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\)
Suy ra: \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)
\(P=\dfrac{3}{2}\)
p/s làm lih tih k chắc đâu:v
Ta có \(\dfrac{a^2}{a^2-b^2-c^2}\)=\(\dfrac{a^2}{a^2-\left(b+c\right)^2+2bc}\)
=\(\dfrac{a^2}{\left(a+b+c\right)\left(a-b-c\right)+2bc}\)=\(\dfrac{a^2}{2bc}\)
=>P=\(\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)=\(\dfrac{a^3+b^3+c^3}{2abc}\)
ta có a3+b3+c3-3abc=(a+b)3-3ab(a+b)+c3-3abc=(a+b+c)[(a+b)2-(a+b)c+c2 ] -3ab(a+b+c) =0 vì a+b+c=0
=>a3+b3+c3=3abc
=>P=\(\dfrac{3abc}{2abc}\)=\(\dfrac{3}{2}\)
vậy P=\(\dfrac{3}{2}\)
\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)
\(\Leftrightarrow\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=a+b+c\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{a+b+c}{abc}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Thay vào A r tính thôi