cho 3 số thực dương không âm thỏa mãn a+b+c=1 

tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2022

Pa2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P(a+2b)2+(b+2c)2+(c+2a)2P≤(a+2b)2+(b+2c)2+(c+2a)2

P(1+2)(a+b+c)=1+2P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1)(a;b;c)=(0;0;1) và các hoán vị

9 tháng 8 2016

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

9 tháng 8 2016

Câu b cũng xét hiệu tương tự cấu a

 

19 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(P+3=a+b^2+1+c^3+1+1\)\(\ge a+2b+3c\)

Lại có \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=6\) nên nhân theo vế rồi áp dụng BĐT Cauchy-Schwarz có:

\(6\left(P+3\right)=\left(a+2b+3c\right)\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

\(\ge\left(\sqrt{a\cdot\frac{1}{a}}+\sqrt{2b\cdot\frac{2}{b}}+\sqrt{3c\cdot\frac{3}{c}}\right)^2\)

\(=\left(1+2+3\right)^2=6^2=36\)

\(\Rightarrow6\left(P+3\right)\ge36\Rightarrow P+3\ge6\Rightarrow P\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bài 1: 

a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)

b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)

hay x=4

Bài 2: 

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)

Mình da xem roi rat hay cam on ban.

14 tháng 9 2021

a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)

\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\) 

\(\Delta=25-4\left(-1\right)=29>0\)

\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)

b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)

c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.a) Tính giá trị của A khi x =4b) Rút gọn các biểu thức Bc) Tìm các giá trị của x để A = 322. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1a) Rút gọn Ab) Tính giá trị của A khi x = 6 +...
Đọc tiếp

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.

a) Tính giá trị của A khi x =4

b) Rút gọn các biểu thức B

c) Tìm các giá trị của x để A = 32

2. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1

a) Rút gọn A

b) Tính giá trị của A khi x = 6 + 2√5

c) Tìm x để A = 7

3. Cho biểu thức A =\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) B=  \(\sqrt{x}-\frac{x+2\sqrt{x}+4}{\sqrt{x}+3}\) với x > 0, x ≠ 4.

a) Tính giá trị của A khi x = 9

b) Rút gọn biểu thức B

c) Tìm x để \(A.B=\frac{1}{3}\)

4. Cho hai biểu thức A =\(\frac{2\sqrt{x}}{x-9}-\frac{2}{\sqrt{x+3}}\) và B = \(\frac{3}{x-3\sqrt{x}}\), với x > 0, x ≠ 9

a) Tính giá trị của B khi x = 25

b) Rút gọn biểu thức A

c) Tìm giá trị của x để \(\frac{B}{A}=\frac{2\sqrt{x}+1}{2}\)

0

Bài 1

a, 3X2=27

=>X2=27:3

=>X2=9

=>X2=32

=>x=3

21 tháng 8 2016
 1) trong tam giác ABD vuông tại A, đường cao AH tính AD 
dựa vào hệ thức 1/AH^2=1/AD^2+1/AB^2 
Trong tg ADC vuông tại D đường cao DH tính AC 
dựa vào hệ thức AD^2=AH*AC => HC 
2)Kẻ AE//BD (E thuộc CD) 
=> AE vg AC, AE=BD 
trong tg AEC vuông tại A đường cao AH tính được AH 
3)Đk: pt viết thành 
can(x-2)(x-3)+can(x+1)=can(x-2)+can(x-... 
<=>(can(x-3))(can(x-2)-can(x+1))-(can(... 
<=>(can(x-2)-can(x+1))(can(x-3)-1)=0 
<=> (can(x-2)-can(x+1))=0 (*) hoặc can(x-3)-1=0 (**) 
giải các pt trên :
(*)<=> can(x-2)=can(x+1) 
<=> x-2=x+1 vô nghiệm 
(**) <=> can(x-3)=1 
<=> x-3=1=>x=4 
4) pt viết thành:
 can(x^2+2x)=2can2 
bình phương 2 vế và chuyển vế 
x^2+2x-8=0 
<=> x^2 +4x-2x-8=0 
<=>x(x+4) -2(x+4)
<=>(x-2)(x+4)=0 
<=> x=2; x=-4