câu1 Cho △EGF vuông tại E có GE=3cm ,GF=8cm.Số đo góc EFG (làm tròn dến phút ) là 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

\(sinEFG=\dfrac{EG}{FG}=\dfrac{3}{8}\)

\(\widehat{EFG\: }\simeq22^o\)

=> Chọn C

17 tháng 10 2023

sin EFG = GE/GF = 3/8

⇒ ∠EFG ≈ 22⁰1´

Chọn A

18 tháng 10 2023

\(sin\widehat{EFG\: }=\dfrac{EG}{FG}=\dfrac{3}{4}\)

\(\Rightarrow\widehat{EFG\: }\simeq48,6^o\)

8 tháng 8 2021

Làm đông đá 

BẢO

30 tháng 9 2015

bạn nhập câu hỏi vào google sẽ có đáp án ngay 

21 tháng 5 2018

O O' A B H C F D K G E 1 2 3 4

a) Xét đường tròn (O';R) có: Đường kính OC và điểm A nằm trên cung OC => ^OAC=900

=> OA vuông góc với AC. Mà OA là bán kính của (O) => AC là tiếp tuyến của (O)

Ta thấy: 2 đường tròn (O) và (O') có cùng bán kính R => OA=OB=O'A=O'B= R

=> Tứ giác AOBO' là hình thoi =>OA // O'B

Lại có: OA vuông góc AC (cmt) => O'B vuông góc AC (Qhệ //, vg góc) hay BF vuông góc AC (đpcm).

b) Xét tứ giác ADKO: ^DKO=^OAD=900 (=^OAC)

=> Tứ giác ADKO nội tiếp đường tròn tâm là trg điểm OD (đpcm). 

c) Do tứ giác AOBO' là hình thoi nên AB vuông góc OO' (tại H) (1)

Ta có điểm B thuộc (O') và F đối xứng B qua O' => F thuộc (O') (Vì đường tròn có tâm đối xứng)

Xét (O') đường kính BF và A thuộc cung BF => AB vuông góc AF (2)

Từ (1) và (2) => OO' // AF

Xét tứ giác AOO'F: OO' // AF; OA // O'F (cmt) => Tứ giác AOO'F là hình bình hành

=> AF = OO'. Mà AF=AD nên AD=OO'.  Lại có: OO' = OA => AD=OA.

Xét tứ giác ADKO nội tiếp đường tròn => ^AOK+^ADK = 1800

Mà ^ADK + ^ADG = 1800 nên ^AOK=^ADG hay ^AOH=^ADG

Xét \(\Delta\)AHO và \(\Delta\)AGD: AO=AD (cmt); ^AOH=^ADG; ^AHO=^AGD=900

=> \(\Delta\)AHO=\(\Delta\)AGD (Cạnh huyền góc nhọn) => AH=AG

Xét tứ giác AHKG: ^AHK=^HKG=^HAG=900;  AH=AG (cmt) => Tứ giác AHKG là hình vuông.

d) Dễ thấy: AO=OO'=O'A => Tam giác AOO' đều => ^AO'O = 600

Lại có: Hình bình hành AOO'F có O'O=O'F => Tứ giác AOO'F là hình thoi

=> ^AO'O=^AO'F = 600 => ^FO'C = 600

=> SHình quạt  AO'O = 1/6 S (O) = \(\frac{R^2.\pi}{6}\)

Tương tự, suy ra: S H.quạt AO'O = S H.quạt BO'O = S H,quạt AOO' = S H.quạt BOO' = \(\frac{R^2.\pi}{6}\)

Cộng tất cả lại => \(S_1+S_2+S_3+S_4+2.S_{AOBO'}=4.\frac{R^2.\pi}{6}=\frac{2R^2.\pi}{3}\)

\(\Rightarrow S_1+S_2+S_3+S_4+S_{AOBO'}=\frac{2R^2.\pi}{3}-S_{AOBO'}\)

\(\Rightarrow S_{P.C}=\frac{2R^2.\pi}{3}-R^2.\frac{\sqrt{3}}{2}=\frac{4R^2.\pi}{6}-\frac{3\sqrt{3}.R^2}{6}=\frac{R^2.\left(4\pi-3\sqrt{3}\right)}{6}\)

\(=\frac{R^2.\left(4.3,14-3.1,73\right)}{6}=\frac{R^2.7,37}{6}\)(Chú thích SPhần chung: SP.C)

Vậy diện tích phần chung của (O0 và (O') tính theo R là \(S_{P.C}=\frac{7,37.R^2}{6}.\)

21 tháng 5 2018

F G A B C E O' K D N O

a) Xét đường tâm O'

\(\widehat{OAC}=90^o\)