Cho tam giác ABC cân tại A Trên tua đối của tua BA lấy điểm D trên tia đối của tia CA lấ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

ta có: góc ABC = góc HBD (đối đỉnh )  ; góc ACB = góc KCE (đối đỉnh) ; góc ABC = góc ACK(  \(\Delta\)ABC)

=> góc HBD = góc KCE

Mà DH vuông góc BC => góc BHD =90 độ ; EK vuông góc BC => góc CKE =90 độ

a) Xét tam giác vuông BHD và tam giác vuông CKE có :

BD = CE (gt)

góc HBD = góc KCE

=> \(\Delta\)BHD = \(\Delta\)CKE ( cạnh huyền - góc kề)

=> HB=KC (c/c/t/u)

27 tháng 4 2016

góc HBD = góc KCE (cmt)

góc HBD + góc HBA= 180 độ ; góc KCE + góc ACK = 180 độ

=> góc ABH = góc ACK

xét tam giác ABH và tam giác ACK có :

HB=KC (cmt

góc ABH = góc ACK 

AB=AC (\(\Delta\)ABC can )

xét tam giác ABH = tam giác ACK (c.g.c)

=> góc AHB = góc AKC (c/g/t/u)

29 tháng 4 2017

a/ Ta có: góc HBD đối đỉnh góc ABC; góc KCE đối đỉnh góc ACB mà ABC=ACB( Tg ABC cân tại A) => Góc HBD = góc KCE.

Xét tg HBD ( vuông tại H) và tg KCE ( vuông tại K) có:

                 góc HBD = góc KCE ( cmt)

                 DB=CE (gt)

=> Tg HBD=Tg KCE( ch-gn)

=> HB=CK( hai cạnh tương ứng)

b/ Xét tg AHB và tg AKC có:

                 HB=CK ( cmt)

                góc ABH= góc ACK ( cùng kề bù với hai góc bằng nhau)

                 AB=AC( tg ABC cân tại A)

=> tg AHB= tg AKC ( c.g.c)

=> góc AHB = góc AKD( hai góc tương ứng)

c/ Ta có : AB+BD=AD; AC+CE=AE mà AB=AC và BD=CE => AD=AE 

Trong tg ADE có AD=AE => Tg ADE cân tại A

Ta có: góc ABC= góc ACB =\(\frac{180^0-gócBAC}{2}\)và góc ADE= góc AED=\(\frac{180^0-gócBAC}{2}\)

=> góc ABC=góc ACB= góc ADE= góc AED .

Mà ABC và ADE cùng nằm ở vị trí đồng vị => HK//DE

d/ ta có: góc HAB+ góc BAC= góc HAC

             góc KAC+ góc BAC= góc KAB

mà góc HAB=góc CAK ( tg AHB= tg AKC) => góc HAC= góc KAB.

Xét tg AHE và tg AKD có:

             AH = AK( tg AHB= tg AKC)

             góc HAC= góc KAB ( CMT)

             AE=AD

=>  Tg AHE =tg AKD ( c.g.c)

e/ Mk` chưa giải được.

29 tháng 4 2017

xin lỗi em mới học lớp 5 thôi

A B C H K D E I

a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta HBD\perp H\)và \(\Delta KCE\perp K\)có :

\(BD=CE\left(gt\right)\)

Mặt khác : góc HBD đối đỉnh với góc ABC = > góc HBD = góc ABC

                  góc KCE đối đỉnh với góc ACB = > góc KCE = góc ACB

Mà góc ABC = ACB = > góc HBD = góc KCE 

\(=>\Delta HBD=\Delta KCE\left(ch-gn\right)\)

= > HB = CK ( 2 cạnh tương ứng )

b, Xét \(\Delta AHB\)và \(\Delta AKC\)có 

HB = CK ( cmt )

AB = AC ( gt )

\(\widehat{HBD}+\widehat{HBA}=180^0\)

= > \(\widehat{HBA}=180^0-\widehat{HBD}\)( 1 )

\(\widehat{KCE}+\widehat{KCA}=180^0\)

= > \(\widehat{KCA}=180^0-\widehat{KCE}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{HBA}=\widehat{KCA}\)

\(=>\Delta AHB=\Delta AKC\left(c.g.c\right)\)

c, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)( 1 )

\(B\in AD\)

= > AB + BD = AD ( * )

\(C\in AE\)

= > AC + CE = AE ( ** )

Từ ( * ) và ( ** ) = > AD = AE  hay \(\Delta ADE\)cân tại A 

= > \(\widehat{ADE}=\frac{180^0-\widehat{EAD}}{2}\)( 2 )

Từ ( 1 ) và ( 2 ) = > \(\widehat{ABC}=\widehat{ADE}\)hay HK // DE

d, Xét \(\Delta AHE\)và \(\Delta AKD\)có:

\(\widehat{A}\)chung

AH = AK ( cmt )

AE = AD ( cmt )

= > \(\Delta AHE=\Delta AKD\left(c.g.c\right)\)

câu e, bạn làm nốt nhé 

6 tháng 5 2016

Bạn tự vẽ hình nhaleu

AD = AB + BD

AE = AC + CE

mà AB = AC (tam giác ABC cân tại A)

      BD = CE (gt)

=> AD = AE

HAE = HAB + BAE

KAD = KAC + CAD

mà HAB = KAC (tam giác AHB = tam giác AKC)

=> HAE = KAD 

Xét tam giác AHE và tam giác AKD có:

AD = AE (chứng minh trên)

HAE = KAD (chứng minh trên)

AH = AK (tam giác AHB = tam giác AKC)

=> Tam giác AHE = Tam giác AKD (c.g.c)

Chúc bạn học tốtok

5 tháng 2 2017

cho tam giác ABC cân ở a . trên tia đối của tia BA lấy điểm D , trên tia đối của tia CA lấy điểm E sao cho BD=CE . từ các điểm d và e lần lượt kẻ các đoạn thẳng DH, EK vuông góc với bc . c,m

a) BH=CK

b) tam giác ahk là tam giác cân

18 tháng 3 2020

Tự vẽ hình nhá :)

AD = AB + BD

AE = AC + CE

Mà AB = AC ( \(\Delta ABC\)cân tại A )

BD = CE ( gt )

=>  AD = AE

\(\widehat{HAE}=\widehat{HAB}+\widehat{BAE}\)

\(\widehat{KAD}=\widehat{KAC}+\widehat{CAD}\)

Mà \(\widehat{HAB}=\widehat{KAC}\) \(\left(\Delta ABH=\Delta AKC\right)\)

\(\Rightarrow\widehat{HAE}=\widehat{KAD}\)

Xét \(\Delta AHE\)và \(\Delta AKD\) có :

AD = AE ( cmt )

\(\widehat{HAE}=\widehat{KAD}\left(cmt\right)\)

AH = AK ( \(\Delta AHB=\Delta AKC\))

\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\)