Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
em học lớp 9 lộn ngược nè! Dang Dang hỏi em thì hỏi cái đầu gối còn hơn
\(\hept{\begin{cases}x+y+z\ge3\sqrt[z]{xyz}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\end{cases}\Rightarrow}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{\left(x+y+z\right)}\ge\frac{9}{6}=\frac{3}{2}\)đẳng thức khi x=x=z=2
Do x + y + z = 4 suy ra z = 4 - y -x
Ta có x + y >= 4xy -x^2y - yx^2
\(xyz\le\frac{\left(x+y\right)^2z}{4}=\frac{\left(6-z\right)^2z}{4}=\frac{\left(6-z\right)\left[\left(6-z\right)z\right]}{4}\)
\(\le\frac{\left(6-z\right)\left(6-z+z\right)^2}{16}=\frac{\left(6-z\right).36}{16}\le\frac{\left(6-3\right).36}{16}=\frac{27}{4}\)
Dấu \(=\)khi \(\hept{\begin{cases}x=y\\z=3\\x+y+z=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{3}{2}\\z=3\end{cases}}\).
thanks