Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
\(6^3=216;6^4=1296\)
\(\Rightarrow n\le3\Rightarrow n=\left\{0;1;2;3\right\}\)
Thay lần lượt các giá trị của n vào \(18mn+6^n=222\) ta tìm được n=1 và m=12 là giá trị thoả mãn biểu thức
b/
\(\overline{abcd}=100.\overline{ab}+\overline{cd}=12.\overline{ab}+\overline{cd}+88.\overline{ab}\)
Ta có \(\left(12.\overline{ab}+\overline{cd}\right)⋮11;88.\overline{ab}⋮11\Rightarrow\overline{abcd}⋮11\)
\(12.\overline{ab}+\overline{cd}=100.\overline{ab}+\overline{cd}-88.\overline{ab}=\overline{abcd}+8.11.\overline{ab}⋮11\)
\(8.11.\overline{ab}⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
2. a-b =2.(a+b)=2a + 2b
=> a = 2a + 3b
=> a- 2a = 3b
=> -a = 3b
Nhân 2 vế cho -1, có : a = -3b (dpcm)
a= -3b => \(\frac{a}{b}=\frac{-3b}{b}=-3\)
=> a-b = 2.(a+b) =-3
=> 2a = -3 + \(\frac{-3}{2}\)= \(\frac{-9}{2}\)
=> a= \(\frac{-9}{4}\) => b= \(\frac{3}{4}\)
Vậy a = \(-\frac{9}{4}\); b = \(\frac{3}{4}\)
Bài 1:
Xét 2 TH :
1) p chẵn :
p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất ---> TH 1 không có số nào.
2) p lẻ :
Giả sử p = m+n (m,n là số nguyên tố).Vì p lẻ ---> trong m và n có 1 lẻ, 1 chẵn
Giả sử m lẻ, n chẵn ---> n = 2 ---> p = m+2 ---> m = p-2 (1)
Tương tự, p = q-r (q,r là số nguyên tố).Vì p lẻ ---> trong q và r có 1 lẻ, 1 chẵn
Nếu q chẵn ---> q = 2 ---> p = 2-r < 0 (loại)
---> q lẻ, r chẵn ---> r = 2 ---> p = q - 2 ---> q = p+2 (2)
(1),(2) ---> p-2 ; p ; p+2 là 3 số nguyên tố lẻ (3)
+ Nếu p < 5 ---> p-2 < 3 ---> p-2 không thể là số nguyên tố lẻ
+ Nếu p = 5 ---> (3) thỏa mãn ---> p = 5 là 1 đáp án.
+ Nếu p > 5 :
...Khi đó p-2; p; p+2 đều lớn hơn 3
...- Nếu p-2 chia 3 dư 1 thì p chia hết cho 3 ---> p ko phải số nguyên tố (loại)
...- Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số n/tố (loại)
Vậy chỉ có 1 đáp án là p = 5.
\(ab=cd\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck;b=dk\)
\(\Rightarrow ab=cd\Leftrightarrow cdk^2-cd=0\)
\(\Leftrightarrow cd\left(k^2-1\right)=0\Leftrightarrow k=\pm1\)
\(\left(+\right)k=1\Rightarrow\frac{a}{c}=\frac{b}{d}=1\Leftrightarrow a=c;b=d\)
\(\Rightarrow a^n+b^n+c^n+d^n=2a^n+2b^n\ge4\forall a,b>0\)
và \(2a^n+2b^n⋮2\Rightarrow a^n+b^n+c^n+d^n\)là hợp số
\(\left(+\right)k=-1\Rightarrow\frac{a}{c}=\frac{b}{d}=-1\Leftrightarrow a=-c;b=-d\)( vô lí )
Vì \(a,b,c,d>0\)
Vậy \(A=a^n+b^n+c^n+d^n\)là hợp số