Hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2022

a.

Gọi E là trung điểm CD \(\Rightarrow H\in SE\)

Trong mp (ABCD), gọi F là giao điểm GE và AC

Trong mp (SGE), nối GH cắt SF tại I

\(\left\{{}\begin{matrix}I\in GH\\I\in SF\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow I=GH\cap\left(SAC\right)\)

b.

Gọi O là giao điểm AC và BD

Do G là trọng tâm ACB \(\Rightarrow BG=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)

\(MD=2SM\Rightarrow SM=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{BG}{BD}=\dfrac{SM}{SD}=\dfrac{1}{3}\Rightarrow MG||SB\) (1)

Gọi J là trung điểm SC, do H là trọng tâm SCD \(\Rightarrow DH=\dfrac{2}{3}DJ\)

\(MD=2SM=2\left(SD-DM\right)\Rightarrow MD=\dfrac{2}{3}SD\)

\(\Rightarrow\dfrac{MD}{SD}=\dfrac{DH}{DJ}=\dfrac{2}{3}\Rightarrow MH||SJ\Rightarrow MH||SC\) (2)

(1);(2) \(\Rightarrow\left(MGH\right)||\left(SBC\right)\)

\(\Rightarrow GH||\left(SBC\right)\)

NV
3 tháng 11 2022

loading...

16 tháng 8 2016

bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :) 

 

16 tháng 8 2016

thuộc ban nhé. có lẽ mình ghi sai

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

22 tháng 12 2020

Xin bổ sung thêm là Q là TĐ của SB nha

NV
22 tháng 12 2020

Bạn coi lại đề bài.

N,M,P,Q là các điểm trên CD, AD, SA hay trung điểm?

Vì nếu trung điểm thì làm sao thỏa mãn MD=2MC hay NA=3ND được?

6 tháng 12 2023

S A B C D O M N P H K

a/

Xét tg SAD có

SM=DM; SN=AN => MN là đường trung bình của tg SAD

=> MN//AD

Mà AD//BC (cạnh đối hbh)

=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)

C/m tương tự ta cũng có NP//(SCD)

b/

Ta có

NP//(SCD) (cmt) (1)

Xét tg SBD có

SP=BP (gt)

OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> PO là đường trung bình của tg SBD

=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)

Từ (1) và (2) => (ONP)//(SCD)

C/m tương tự ta cũng có (OMN)//(SBC)

c/

Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có

MN//AD (cmt)

=> KH//MN

\(O\in\left(OMN\right);O\in KH\)

\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)

=>K; H là giao của (OMN) với CD và AB

d/

Ta có

KH//AD

AB//CD => AH//DK

=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

=> AD=HK

Ta có

MN là đường trung bình của tg SAD (cmt)

\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)

\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)

 

 

 

 

 

Trong mp(SDA), gọi E là giao điểm của SG với AD

Trong mp(SBC), gọi K là giao điểm của SH với BC

Xét ΔSAD có

G là trọng tâm của ΔSAD
E là giao điểm của SG với AD

Do đó: E là trung điểm của AD

Xét ΔSBC có

H là trọng tâm của ΔSBC

SH cắt BC tại K

Do đó: K là trung điểm của BC

Xét hình thang ABCD(AB//CD) có

E,K lần lượt là trung điểm của AD,BC

=>EK là đường trung bình

=>EK//AB

Xét ΔSDE có

SE là đường trung tuyến

G là trọng tâm

Do đó: \(\dfrac{SG}{SE}=\dfrac{2}{3}\)

Xét ΔSBC có

H là trọng tâm của ΔSBC

SK là đường trung tuyến

Do đó: \(\dfrac{SH}{SK}=\dfrac{2}{3}\)

Xét ΔSEK có \(\dfrac{SG}{SE}=\dfrac{SH}{SK}\left(=\dfrac{2}{3}\right)\)

nên GH//EK

mà EK//AB

nên GH//AB

Ta có: GH//AB

AB\(\subset\)(SAB)

GH không nằm trong mp(SAB)

Do đó: GH//(SAB)

22 tháng 12 2020

Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v     

                  undefined undefined

 

23 tháng 12 2020

cảm ơn bạn nha

13 tháng 11 2018