So sánh:

\(A=\frac{67^{2016}}{67...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
11 tháng 9 2021

ta có :

\(A=\frac{67^{2016}}{67^{2016}-11}=1+\frac{11}{67^{2016}-11}\)

\(B=\frac{67^{2016}+13}{67^{2016}+2}=1+\frac{11}{67^{2016}+2}\)

Vì \(67^{2016}-11< 67^{2016}+2\Rightarrow A>B\)

7 tháng 9 2016

Bài 1:

a) Để x là số âm <=>x<0

<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)

b) Để x là số dương <=> x>0

<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)

c) x k phải là số âm k phải là số dương <=>x=0

<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)

 

 

8 tháng 9 2016

mk thanks bn nhìu lắm nha @@ok

23 tháng 11 2019

Ta co:

\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)

Dau '=' xay ra khi \(a=b=c=672\)

NV
13 tháng 4 2020

Ta có: \(\frac{sinx+cotx}{1+tanx.sinx}=\frac{sinx.cosx\left(sinx+cotx\right)}{sinx.cosx\left(1+tanx.sinx\right)}=\frac{cosx\left(sin^2x+cosx\right)}{sinx\left(cosx+sin^2x\right)}=cotx\)

\(\Rightarrow\frac{\left(sinx+cotx\right)^{2016}}{\left(1+tanx.sinx\right)^{2016}}=cot^{2016}x\) (1)

\(\frac{sin^{2016}x+cot^{2016}x}{1+tan^{2016}x.sin^{2016}x}=\frac{sin^{2016}x.cos^{2016}x\left(sin^{2016}x+cot^{2016}x\right)}{sin^{2016}x.cos^{2016}x\left(1+tan^{2016}x.sin^{2016}x\right)}\)

\(=\frac{cos^{2016}x\left(sin^{4032}x+cos^{2016}x\right)}{sin^{2016}x\left(cos^{2016}x+sin^{4032}x\right)}=cot^{2016}x\) (2)

(1);(2) suy ra đpcm

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

9 tháng 7 2016

\(x=\frac{2^{2016}}{2^{2014}}=2^{2016-2014}=2^2=4\)

16 tháng 7 2016

sai r