Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\left(ĐKXĐ:n\ne-1\right)\)
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)\)
Xét bảng :
Ư(13) | n+1 | n |
13 | 13 | 12 |
-13 | -13 | -14 |
1 | 1 | 0 |
-1 | -1 | -2 |
Vậy để 2n+15/n+1 là số nguyên thì \(n\in\left\{-14;-2;0;12\right\}\)
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)
\(2n-1⋮n+3\)
\(2\left(n+3\right)⋮n+3\)
\(2n+6⋮n+3\)
\(\left(2n+6\right)-\left(2n-1\right)⋮n+3\)
\(2n+6-2n+1⋮n+3\)
\(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét giá trị
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
|x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
Do |x + 1| + |x + 2| + |x + 3| + |x + 4| \(\ge\)0
=> 5x \(\ge\)0
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
P/s : Sai thì cậu thông cảm cho mình nha :P
=| x + 1+ x + 2 + x + 3 + x +4 | =5x
=|4x +( 1+ 2 + 3 + 4 )| =5x
=|4x + 10| =5x
=4x + 10 = 5x
=10 = 5x : 4x
=10 = x
=>x = 10
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
2n-1 là bội của n+3
=> 2n-1 chia hết n+3
Ta có : n+3 chia hết n+3
=>2(n+3) chia hết n+3
=>2n+6 chia hết n+3
=>((2n+6)-(2n-1)) chia hết cho n+3
=>(2n+6-2n+1) chia hết n+3
<=> 7 chia hết n+3
=> n+3 \(\in\) Ư(7)
=>n+3 \(\in\)(-1;-7;7;1)
ta có
n+3 | -1 | -7 | 7 | 1 |
n | -4 | -10 | 4 | -2 |
vậy n \(\in\)(-4;-10;4;-2)
\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)
\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)
\(\Rightarrow13⋮n+1\)
\(\Rightarrow n+1=Ư\left(13\right)\)
\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)
Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z ⇔ 2.(-1) + 15 ⋮ n +1
⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}