Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
P là trung điểm của AC
N là trung điểm của BC
Do đó: PN là đường trung bình
=>PN//AM và PN=AM
hay APNM là hình bình hành
mà AN=PM
nên APNM là hình chữ nhật
a: Xét ΔABC có
P là trung điểm của AC
N là trung điểm của BC
Do đó: PN là đường trung bình
=>PN//AM và PN=AM
hay APNM là hình bình hành
mà AN=PM
nên APNM là hình chữ nhật
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AC(cùng vuông góc với AB)
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB(cùng vuông góc với AC)
Do đó: P là trung điểm của AC
=>\(AP=PC=\dfrac{AC}{2}\)
mà MN=AP(ANMP là hình chữ nhật)
nên MN=AP=PC
Xét tứ giác CMNP có
CP//MN
CP=MN
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
mà E là trung điểm của MP
nên E là trung điểm của CN
c: Xét ΔPMA và ΔPGC có
\(\widehat{PCG}=\widehat{PAM}\)(hai góc so le trong, CG//AM)
PA=PC
\(\widehat{CPG}=\widehat{APM}\)(hai góc đối đỉnh)
Do đó: ΔPMA=ΔPGC
=>PG=PM
=>P là trung điểm của MG
Xét tứ giác AMCG có
P là trung điểm chung của AC và MG
=>AMCG là hình bình hành
Hình bình hành AMCG có AC\(\perp\)MG
nên AMCG là hình thoi
tự kẻ hình nha
a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ
=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi
b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)
ta có PQ vuông góc với AB
AC vuông góc với AB
=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)
từ (1);(2)=> ACEQ là hbh
c) 1) trong tam giác ABC có
MN //AC( N thuộc MP)
AM=MB
=> MN là đtb của tam giác => MN=AC/2=> AC=2MN
2) Vì AC=2MN=> AC=6cm
MN là đtb=> CN=BN
tam giác ABC vuông tại A
=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
=> BC=2AN=10cm
vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2
=> AB^2=100-36
=> AB=8 (AB>0)
=> chu vi tam giác ABC là 6+8+10=24(cm)
a/ Xét tứ giác AMNP
Ta có
PA=PC; NB=NC => PN là đường trung bình của tg ABC => PN //AB => PN// AM và \(PN=\frac{AB}{2}=AM\)
=> AMPN là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau)
Mà \(\widehat{BAC}=90^o\)
=> AMPN là HCN (Hình bình hành có 1 góc vuông là HCN)
b/ Xét tứ giác BMPN có
PN// AB => PN//BM
PN là đường trung bình của tg ABC (cmt) => \(PN=\frac{AB}{2}=BM\)
=> BMPN là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau)
=> BP cắt MN tại I (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => B, I, P thẳng hàng
c/
Xét tg ABP có
LA=LP; IB=IP => IL là đường trung bình của tg ABP \(\Rightarrow IL=\frac{AB}{2}\Rightarrow AB=2.IL\)
Xét tg AKP có
L là trung điểm của AP => KL là đường trung tuyến của tg AKP
M là trung điểm của KP => AM là trung tuyến của tg AKP
=> F là trọng tâm của tg AKP \(\Rightarrow MF=\frac{AM}{3}=\frac{AB}{6}\)
Xét tg BKP chứng minh tương tự ta cũng có
\(ME=\frac{BM}{3}=\frac{AB}{6}\)
\(\Rightarrow EF=MF+ME=\frac{AB}{3}=\frac{2IL}{3}\)