Bài 17 đề 5 

Tìm tất cả các số nguyên tố p sao cho...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

+Nếu p=2 => p+2=2+2=4 là hợp số (loại)

+Nếu p=3 => p+2=3+2=5, p+4=3+4=7 là các số nguyên tố (thỏa mãn)

+Nếu p>3:p lại là số nguyên tố=>p có dạng 3k+1 hoặc 3k+2(k\(\in N\)*)

    -Với p=3k+1. Ta có: p+2=3k+1+2=3k+3 \(⋮\)3 là hợp số (loại)

    -Với p=3k+2. Ta có: p+4=3k+2+4=3k+6\(⋮\)3 là hợp số (loại)

=> p>3 không thỏa mãn

Vậy p=3

 

8 tháng 6 2015

Trả lời:

Gọi 3 số nguyên tố đó là a,b,c 
Ta có: abc =5(a+b+c) 
=> abc chia hết cho 5, do a,b,c nguyên tố 
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5 
=> bc = b+c +5 => (b-1)(c-1) = 6 
{b-1 =1 => b=2; c-1 =6 => c=7 
{b-1=2, c-1=3 => c=4 (loại) 

Vậy 3 số nguyên tố đó là 2, 5, 7 
2> 
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố 
Với p>3 

* Do p nguyên tố nên ko chia hết cho 3 
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3 
=> ko tồn tại số nguyên tố dạng 3k+1 

Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3 
=> ko tồn tại số nguyên tố dạng 3k+2 

Vậy p=3 là duy nhất

 

8 tháng 3 2020

Đặt m là ƯC(2p-1;4p-1)

Theo bài ra ta có:

2p-1 chia hết cho m

4p-1 chia hết cho m

     2(2p-1) chia hết cho m

=>

     4p-1 chia hết cho m

     

     4p-2 chia hết cho m

=>

      4p-1 chia hết cho m

=> (4p-2) - (4p-1) chia hết cho m

=> 1 chia hết cho m

=> m=1

Vậy m=1

29 tháng 3 2016

vì p là sntố

+,p=2 thì 2^2+2^2=8 là hợp số

+,p=

21 tháng 10 2015

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

25 tháng 4 2020

hay đó

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

Nếu $p$ chia hết cho 5 thì do $p$ là số nguyên tố nên $p=5$

Khi đó, $p+2, p+6, p+8, p+14$ cũng là snt (thỏa mãn) 

Nếu $p$ chia 5 dư 1. Đặt $p=5k+1$

Khi đó: $p+14=5k+15=5(k+3)\vdots 5$. Mà $p+14>5$ nên không thể là snt (không tm) 

Nếu $p$ chia 5 dư 2. Đặt $p=5k+2$

Khi đó: $p+8=5k+10=5(k+2)\vdots 5$. Mà $p+8>5$ nên không thể là snt (không tm) 

Nếu $p$ chia 5 dư 3. Đặt $p=5k+3$

Khi đó: $p+2=5k+5=5(k+1)\vdots 5\Rightarrow p+2=5\Rightarrow p=3$. Khi đó $p+6=9$ không là snt (không tm) 

Nếu $p$ chia 5 dư 4. Đặt $p=5k+4$

Khi đó: $p+6=5k+10=5(k+2)\vdots 5$. Mà $p+6>5$ nên không thể là snt (không tm)

Vậy $p=5$

30 tháng 12 2023

+) Với p = 2 thì p + 2 = 2 + 2 = 4 là hợp số (Loại)

+) Với p = 3 thì p + 2 = 3 + 2 = 5, p + 4 = 3 + 4 = 7 là các số nguyên tố (Thỏa mãn).

+) Với p > 3: p là số nguyên tố nên suy ra: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*).

+) p = 3k + 1: Ta có: p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k + 1) ⋮ 3 là hợp số (Loại) +) p = 3k + 2:

Ta có: p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k + 2) ⋮ 3 là hợp số (Loại).

Với p > 3 không có giá trị nào thỏa mãn yêu cầu của bài toán.

Vậy p = 3

30 tháng 12 2023

???