Cho Tam giác ABC vuông tại A (AB < AC), đường cao AH. Vẽ HD vuông...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

a/

Ta có

\(AC\perp AB\Rightarrow AE\perp AB\)

\(DH\perp AB\)

=> AE // DH (1)

Ta có

\(AB\perp AC\Rightarrow AD\perp AC\)

\(HE\perp AC\)

=> AD // HE (2)

Từ (1) và (2) => ADHE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{BAC}=90^o\)

=> ADHE là HCN (Hình bình hành có 1 góc vuông là HCN)

b/

Ta có

DH// AE (cmt) => DH // PE (1)

PE=AE (2)

DH=AE (cạnh đối HCN) (3)

Từ (2) và (3) => DH=PE (4)

Từ (1) và (4) => DHPE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

c/

Xét tg AHC có 

IA=IH (I là giao 2 đường chéo của hình chữ nhật ADHE)

MH=MC

=> IM là đường trung bình của tg AHC => IM//AC

Mà \(AC\perp AB\)

\(\Rightarrow IM\perp AB\)

Xét tg ABM có

\(AH\perp BC\Rightarrow AH\perp BM\)

\(IM\perp AB\left(cmt\right)\)

=> I là trực tâm của tg ABM (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)

\(\Rightarrow BI\perp AM\left(dpcm\right)\)

30 tháng 11 2018

ứ giác HDAE có ^A=^D=^E=90 độ 
nên HDAE là hình chữ nhật, suy ra AH=DE. 

b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH 
suy ra ∆PDH cân tại P nên ^PDH=PHD (1) 
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2) 
công vế với vế của (1) và (2) ta có: 
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ 
Hay ^PDO=90 độ, nên PD┴DE. (3) 
Chứng minh tương tự cuãng có QE┴DE (4) 
từ (3) và (4) suy ra PD//QE 
nên DEQP là hình thang vuông. 

c) BO và AH là đường cao của ∆ABQ nên O là trực tâm 
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5) 
d)∆BDH vuông tại D có DP là trung tuyến 
nên S(BDH)=2S(DPH) (6) 
tương tự S(HAC) = 2S(HEQ) (7) 
Cộng vế với vế của (5), (6), (7) 
thì S(ABC)=2S(DEQP)

30 tháng 11 2018

dạ em cám ơn chị ạ

11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !

5 tháng 1 2020

A B C I H D E O K

Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)

=> ADHE là hình chữ nhật

đt DE cắt đt AH tại O

=> OA = OE

b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)

Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

           t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{B}=\widehat{HAC}\) 

mà \(\widehat{HAC}=\widehat{DEA}\) 

=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)

c) Gọi K là giao điểm của AI và DE

Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)

=> AI = IB = IC = 1/2BC

=> t/giác AIC cân tại I

=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) 

mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)

=> \(\widehat{KAE}+\widehat{KEA}=90^0\)

Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)

=> AI \(\perp\)DE

5 tháng 1 2020

a) Xét tứ giác ADHE 

Ta có: góc A=900(gt)

góc ADH=900(gt)

góc EHD=900(gt)

=>tứ giác ADHE là hcn

=>AH=DE(đpcm)

18 tháng 12 2022

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K