Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^3-7a-6\)
\(\Leftrightarrow a^3+a^2-a^2-a-6a-6\)
\(\Leftrightarrow a^2\left(a+1\right)-a\left(a+1\right)-6\left(a+1\right)\)
\(\Leftrightarrow\left(a+1\right)\left(a^2-a-6\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(b,a^3+4a^2-7a-10\)
\(\Leftrightarrow a^3+5a^2-a^2-5a-2a-10\)
\(\Leftrightarrow a^2\left(a+5\right)-a\left(a+5\right)-2\left(a+5\right)\)
\(\Leftrightarrow\left(a+5\right)\left(a+1\right)\left(a-2\right)\)
\(d,\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
Đặt a^2+a=y ta có
y^2+4y-12=(y+6)(y-2)
<=> (a^2+a+6)(a^2+a-2)
<=> (a^2+a+6)(x-1)(x+2)
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
4. Đặt t= a^2 +a
Suy ra t^2 +4t - 12 = (t-2)(t+6) = (a^2+a-2) (a^2+a +6) = (a-1)(a+2)(a^2+a+6)
5. Đặt t = x^2 +x+1
Ta có: t(t+1) -12
= t^2 +t-12
= (t-3)(t+4)
= ( x^2 +x -2 ) (x^2+x+5)
= (x-1) ( x+2) (x^2+x+5)
6. x^8 + x^7 + x^6 - x^7- x^6 - x^5 + x^5+ x^4 + x^3- x^4- x^3- x^2 + x^2 + x +1
= (x^2 +x+1) ( x^6 - x^5 +x^3 -x^2 +1)
7. x^10 + x^9 +x^8 - x^9- x^8- x^7 +x^7+x^6+x^5 - x^6-x^5 - x^4 + x^5+ x^4 + x^3 - x^3 - x^2 - x + x^2 + x +1
= (x^2 + x + 1) ( x^8 -x^7 + x^5 - x^4 + x^3 -x + 1)
a3 - 7a - 6
= a3 - a - 6a - 6
= a ( a2 - 1 ) - 6 ( a + 1 )
= a ( a - 1 ) ( a + 1 ) - 6 ( a + 1 )
= ( a + 1 ) [ ( a ( a - 1 ) - 6 ]
= ( a + 1 ) ( a2 - a - 6 )
= ( a + 1 ) ( a2 + 2a - 3a - 6 )
= ( a + 1 ) ( a + 2 ) ( a - 3 )
1.a^3-7a-6
<=>x^3+2x^2-2x^2-4x-3x-6
<=>x^2-2x-3(x+2)=(x^2+x-3x-3)(x+2)
<=>[(x-3)(x+1)](x+2)
<=>(x-3)(x+1)(x+2)=0
<=>x-3=0 <=>x=3 hoặc x+1=0<=>x=-1 hoặc x+2=0<=>x=-2
2. a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
=a(b^2+2bc+c^2)+b(c^2+2ca+a^2)+c(a^2+2ab+b^2)-4abc
=ab^2+2abc+ac^2+bc^2+2abc+ba^2+ca^2+2abc+b^2-4abc
=ab^2+bc^2+ca^2+cb^2+6abc-4abc
=ab^2+bc^2+ca^2+cb^2+2abc
=a^3+b^3+c^3+2abc
câu hỏi tương tự
Điểm sao thì ít
Ngồi làm thì nhiều
Ai cho sao tôi
Thì thương tôi với
\(A=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]+4abc\)
\(=a\left(b-c+a\right)\left(b-c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)+4abc\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2\right)+c\left(a^2-2ab+b^2-c^2+4ab\right)\)
\(=\left(a+b-c\right)\left[-c\left(a+b\right)-\left(a-b\right)^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a+b-c\right)\left(-ca-cb-a^2+2ab-b^2+ac+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(c^2-\left(a-b\right)^2\right)\)
\(=\left(a+b-c\right)\left(c+a-b\right)\left(a+b-c\right)\)