Cho tam giác ABC đều có đường cao AH. Trên tIa HC lấy điểm D sao cho HD=HA. Trên nữa mặt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

A B H C D E

18 tháng 1 2018

ta chứng minh bằng phương pháp phản chứng

Giả sử HE>HD⇒⇒HED<HDE=15⇒⇒BHE=HED+HDE<30(1)

mà HD=HA⇒⇒HE>HA⇒⇒HEA<HAB=30

mà ABH=HEA+BHE⇒⇒BHE=ABH-HEA>60-30=30(2)

Từ (1) và (2)⇒⇒ vô lý

Tương tự với trương hợp HE<HD (vô lý)

⇒⇒HE=HD

4 tháng 4 2019

A B C H D x E

Chứng minh phản chứng nhé_._

Giả sử  \(HD>HE\Rightarrow\widehat{HED}>\widehat{BDx}\Rightarrow\widehat{HED}>15^0\left(1\right)\)

Mặt khác:\(HD>HE\Rightarrow HA>HE\left(AH=DH\right)\Rightarrow\widehat{AEH}>\widehat{EAH}\Rightarrow\widehat{AEH}>\frac{60^0}{2}=30^0\left(2\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)

Từ (1);(2) suy ra \(\widehat{BED}>30^0+15^0\Rightarrow\widehat{BED}>45^0\Rightarrow\widehat{ABD}=\widehat{BED}+\widehat{BDE}>45^0+15^0=60^0\)(Trái với giả thiết)

Giả sử \(HD< HE\Rightarrow\widehat{HED}< \widehat{HDx}\Rightarrow\widehat{HED}< 15^0\left(3\right)\)

Mặt khác:\(HD< HE\Rightarrow HA< HE\left(HD=HA\right)\Rightarrow\widehat{AEH}< \frac{60^0}{2}\Rightarrow\widehat{AEH}< 30^0\left(4\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)

Từ (3);(4) suy ra \(\Rightarrow\widehat{BED}=\widehat{AEH}+\widehat{HED}< 15^0+30^0=45^0\Rightarrow\widehat{ABD}< \widehat{BED}+\widehat{BDE}=45^0+15^0=60^0\)(Trái với giả thiết)

Vậy HD=HE.

15 tháng 4 2020

ko còn cách nào khác hả bn