Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta chứng minh bằng phương pháp phản chứng
Giả sử HE>HD⇒⇒HED<HDE=15⇒⇒BHE=HED+HDE<30(1)
mà HD=HA⇒⇒HE>HA⇒⇒HEA<HAB=30
mà ABH=HEA+BHE⇒⇒BHE=ABH-HEA>60-30=30(2)
Từ (1) và (2)⇒⇒ vô lý
Tương tự với trương hợp HE<HD (vô lý)
⇒⇒HE=HD
A B C H D x E
Chứng minh phản chứng nhé_._
Giả sử \(HD>HE\Rightarrow\widehat{HED}>\widehat{BDx}\Rightarrow\widehat{HED}>15^0\left(1\right)\)
Mặt khác:\(HD>HE\Rightarrow HA>HE\left(AH=DH\right)\Rightarrow\widehat{AEH}>\widehat{EAH}\Rightarrow\widehat{AEH}>\frac{60^0}{2}=30^0\left(2\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (1);(2) suy ra \(\widehat{BED}>30^0+15^0\Rightarrow\widehat{BED}>45^0\Rightarrow\widehat{ABD}=\widehat{BED}+\widehat{BDE}>45^0+15^0=60^0\)(Trái với giả thiết)
Giả sử \(HD< HE\Rightarrow\widehat{HED}< \widehat{HDx}\Rightarrow\widehat{HED}< 15^0\left(3\right)\)
Mặt khác:\(HD< HE\Rightarrow HA< HE\left(HD=HA\right)\Rightarrow\widehat{AEH}< \frac{60^0}{2}\Rightarrow\widehat{AEH}< 30^0\left(4\right)\)(Vì có AH là đường cao đồng thời là đường phân giác)
Từ (3);(4) suy ra \(\Rightarrow\widehat{BED}=\widehat{AEH}+\widehat{HED}< 15^0+30^0=45^0\Rightarrow\widehat{ABD}< \widehat{BED}+\widehat{BDE}=45^0+15^0=60^0\)(Trái với giả thiết)
Vậy HD=HE.