Trong mặt phẳng tọa độ Oxy, đường thẳng 2x – y = 3 đi qua điểm:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB. A. 2x + 5y +3=0 B. 2x +5y -3 =0 C. 4x -y-3=0 D. 2x -5y-3=0 36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành. A. x=1 B. y=3 C. x=3 D. y=1 37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg...
Đọc tiếp

35. Trong mặt phẳng tọa độ Oxy , cho hình bình hành ABCD có A(4;-1) , phương trình CD : 2x + 5y +6=0. Viết phương trình cạnh AB.

A. 2x + 5y +3=0

B. 2x +5y -3 =0

C. 4x -y-3=0

D. 2x -5y-3=0

36. Trong mặt phẳng tọA độ Oxy , lập phương trình tổng quát của đg thẳng d , biết d đi qua A(1;3) và song song với trục hoành.

A. x=1

B. y=3

C. x=3

D. y=1

37. Trong mặt phẳng tọa độ Oxy , viết phương trình tổng quát của đg thẳng d , biết rằng d vuông góc với trục hoành đồng thời đi qua A(1;3)

A. y=30

B. y=1

C. x=3

D. x=1

38. Cho 2 đg thẳng d1 : 2x+y-7=0 và d2 : x=-1 + 3t và y=2 + t. Giao điểm của 2 đg thẳng d1 và d2 có tọa độ A(m;n). Tính giá trị P = 2m + n.

A.6

B. 7

C. 8

D.9

39. Trong mặt phẳng tọa độ Oxy , cho điểm M(3;1). Viết phương trình đg thẳng đi qua M và cắt các tia Ox và Oy lần lượt tị A và B sao cho M là trung điểm của AB.

A. 3x + y -10=0

B. x- 3y =0

C. 3x - y -8 = 0

D. x + 3y - 6=0

40. Trong mặt phẳng tọa độ Oxy , tìm hình chiếu N của điểm M (2;-5) lên đg thẳng d : x = -7 + 3t và y = 2 - 4t

A. N( -2/5 ; -34/5)

B. N(2/5 ; 34/5)

C. (-2;-34)

D. ( 2 ;34)

2
NV
10 tháng 4 2020

Bài 38:

Thay phương trình d2 vào d1 ta được:

\(2\left(-1+3t\right)+\left(2+t\right)-7=0\)

\(\Leftrightarrow7t-7=0\Rightarrow t=1\)

\(\Rightarrow\left\{{}\begin{matrix}m=-1+3t=2\\n=2+t=3\end{matrix}\right.\)

\(\Rightarrow P=7\)

Bài 39:

Gọi tọa độ A(a;0) và tọa độ B(0;b)

Do M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\frac{a+0}{2}=3\\\frac{b+0}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(6;0\right)\\B\left(0;2\right)\end{matrix}\right.\)

Phương trình AB: \(\frac{x}{6}+\frac{y}{2}=1\Leftrightarrow x+3y-6=0\)

Bài 40:

d có 1 vtcp là \(\left(3;-4\right)\)

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' có 1 vtpt là \(\left(3;-4\right)\)

Phương trình d':

\(3\left(x-2\right)-4\left(y+5\right)=0\Leftrightarrow3x-4y-26=0\)

N là giao của d và d' nên tọa độ N thỏa mãn:

\(3\left(-7+3t\right)-4\left(2-4t\right)-26=0\Rightarrow t=\frac{11}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N=-7+3t=-\frac{2}{5}\\y_N=2-4t=-\frac{34}{5}\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{2}{5};-\frac{34}{5}\right)\)

NV
10 tháng 4 2020

Bài 35:

Do \(AB//CD\) nên đường thẳng AB nhận \(\left(2;5\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x-4\right)+5\left(y+1\right)=0\Leftrightarrow2x+5y-3=0\)

Bài 36:

Do đường thẳng song song trục hoành nên có dạng \(y=a\)

Do đường thẳng qua A(1;3) nên pt là \(y=3\)

Bài 37:

Do thẳng thẳng vuông góc trục hoành nên có dạng \(x=a\)

Đường thẳng qua A(1;3) nên có pt: \(x=1\)

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

28 tháng 3 2022

Tham khảo:

undefined

28 tháng 3 2022

thấy sai sai :))

I nằm trên Δ nên I(x;2x+1)

\(IA=IB\)

=>IA^2=IB^2

=>(x+1)^2+(2x+1-1)^2=(x-1)^2+(2x+1+3)^2

=>x^2+2x+1+4x^2=x^2-2x+1+4x^2+16x+16

=>14x+17=2x+1

=>12x=-16

=>x=-4/3

=>I(-4/3;-5/3)

mà A(-1;1)

nên \(R=\sqrt{\left(-1+\dfrac{4}{3}\right)^2+\left(1+\dfrac{5}{3}\right)^2}=\dfrac{\sqrt{65}}{3}\)

=>\(\left(C\right):\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)

16 tháng 6 2020

Làm sao để ra được I (-2t-5;t) vậy bạn

12 tháng 6 2020

2)

Gọi (d) là đường thẳng qua M, H

Vì (d) vuông góc với (\(\Delta\)) => \(\overrightarrow{n_d}=\left(1;2\right)\)

có : (d) qua điểm M(3;-1) và 1 vtpt (1;2)

=> (d): \(\left(x-3\right)+2\left(y+1\right)=0\)

<=> (d) : \(x+2y-1=0\)

* \(H=\left(d\right)\cap\left(\Delta\right)\) nên tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}2x-y+3=0\\x+2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy tọa độ hình chiếu H(-1;1)