Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tanx=tan\left(\dfrac{3\pi}{11}\right)\Leftrightarrow x=\dfrac{3\pi}{11}+k\pi\)
\(\dfrac{\pi}{4}< x< 2\pi\Rightarrow\dfrac{\pi}{4}< \dfrac{3\pi}{11}+k\pi< 2\pi\)
\(\Rightarrow-\dfrac{1}{44}< k< \dfrac{19}{11}\Rightarrow k=\left\{0;1\right\}\)
\(\Rightarrow\) Phương trình có 2 nghiệm trên khoảng đã cho (ứng với 2 giá trị của k)
sin(2x-40º) = 1 ⇔ 2x-40º = 90º + k360º ⇔ x = 65º + k180º
-180º < x < 180º ⇒ x=65º (k=0),x= -115º (k= -1) .
=>B
Bài 1.
a) trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = - π; x = 0 ; x = π.
b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ . Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là .
c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
you know i copy the net :))
HT
tanx=tan3pi/11
x=3pi/11+kpi
\(\frac{\pi}{4}< \frac{3\pi}{11}+k\pi< 2\pi\)
\(\frac{1}{4}< \frac{3}{11}+k< 2\)
\(\frac{1}{4}-\frac{3}{11}< k< 2-\frac{3}{11}\)
\(-\frac{1}{44}< k< \frac{19}{11}\)
\(\Rightarrow k=0;k=1\)
Vậy chọn B