Số nghiệm của phương trình sin(2x – 40º) = 1 với -180º < x < 180º là:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

ko ai biết làm à?=((

5 tháng 6 2021

sin⁡(2x-40º) = 1 ⇔ 2x-40º = 90º + k360º ⇔ x = 65º + k180º

-180º < x < 180º ⇒ x=65º (k=0),x= -115º (k= -1) .

=>B

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

9 tháng 4 2017

a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.

Đặt t = tanx thì phương trình này trở thành

2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.

Vậy

b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành

3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x

⇔ sin2x - 4sinxcosx + 3cos2x = 0

⇔ tan2x - 4tanx + 3 = 0

⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.

c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương

sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔

⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.

d) 2cos2x - 3√3sin2x - 4sin2x = -4

⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0

⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0


NV
7 tháng 10 2019

1/ \(cosx=\frac{1}{3}\Rightarrow x=\pm a+k2\pi\) với \(cosa=\frac{1}{3}\)

Tổng các nghiệm:

\(\sum x=a+a+2\pi+\left(-a+2\pi\right)+\left(-a+4\pi\right)=8\pi\)

2/ ĐKXĐ:...

\(\Leftrightarrow1+tan^2x-2tanx-4=0\)

\(\Leftrightarrow tan^2x-2tanx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan3+k\pi\end{matrix}\right.\)

b/ Không hiểu đề đoạn này \(sinx.cosx\left(x+\frac{\pi}{2}\right)\) , góc trong ngoặc không biết là của cái gì?

c/ ĐKXĐ:...

\(1+cot^2x+3tan^2x=5\)

\(\Leftrightarrow\frac{1}{tan^2x}+3tan^2x-4=0\)

\(\Leftrightarrow3tan^4x-4tan^2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tan^2x=1\\tan^2x=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}tanx=\pm1\\tanx=\pm\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{4}+k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
7 tháng 10 2019

d/

ĐKXĐ: \(sinx\ne0\Rightarrow cosx\ne\pm1\)

\(2.cos^2x=1-cosx\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow cosx=cos\frac{\pi}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)