Nêu ảnh hưởng của độ lệch pha đến biên độ dao động của dao động tổng hợp trong các trường h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

TL
a) Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A=A1+A2

b) Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: A=|A1−A2|
c) Hai dao động có thành phần có pha vuông góc:

 A=A12+A22

8 tháng 11 2021

Biên độ dao động tổng hợp phụ thuộc vào độ lệch pha Δφ = φ2 - φ1 

Nếu hai dao động thành phần ngược pha: Δφ = φ2 - φ1 = (2n + 1)π (n = 0, ± 1,± 2,…) thì biên độ dao động tổng hợp là nhỏ nhất A = |A1 - A2 |

8 tháng 11 2021

a)

Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A1 + A2 = A

b)

Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: |A1 - A2|=A

c)

Hai dao động có thành phần có pha vuông góc:  √ (A12 + A22) = A

HT :vvv

20 tháng 8 2016

Ta có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R\)

\(4P=\dfrac{U_{2}^{2}}{Z_{2}^{2}}R\)

\(\Rightarrow \dfrac{P}{4P}=\left( \dfrac{U_{1}}{U_{2}} \right)^{2}\left( \dfrac{Z_{2}}{Z_{1}} \right)^{2}\)

\(\Leftrightarrow \dfrac{1}{4}=\left(\dfrac{n_{1}}{n_{2}} \right)^{2}\left(\dfrac{Z_{2}}{Z_{1}} \right)^{2}\rightarrow Z_{2}=Z_{1}\)

Ta nghĩ đến bài toán f biến thiên có 2 giá trị của f mạch cho cùng 1 tổng trở.\(\Rightarrow n_{0}=\sqrt{n_{1}n_{2}}=\sqrt{2}n \)

Vậy khi roto quay với tốc độ \(\sqrt{2}n\) mạch xảy ra cộng hưởng.

Công suất: \(P_0=\dfrac{U_{0}^{2}}{R}\)

Lại có:

\(P=\dfrac{U_{1}^{2}}{Z_{1}^{2}}R=\dfrac{U_{1}^{2}}{2R^{2}}R=\dfrac{U_{1}^{2}}{2R}\) (Do \(Z_1=\sqrt 2.R\)

\(\Rightarrow \dfrac{P}{P_{0}}=\dfrac{U_{1}^{2}}{2U_{0}^{2}}=\dfrac{1}{2}\left(\dfrac{n_{1}}{n_{0}} \right)^{2}=\dfrac{1}{4} \Rightarrow P_{0}=4P\)

Vậy: \(P_0=4P\)

20 tháng 8 2016

\(U_0=\omega\phi\)

\(P=I^2R=\left(\frac{U_0}{Z\sqrt{2}}\right)^2R=\frac{\omega^2\phi^2R}{2\left(R^2\left(\omega L-\frac{1}{\omega c}\right)^2\right)}\)

\(=\frac{\phi^2R}{2\left(\frac{R^2}{\omega^2}+\left(L-\frac{1}{\omega^2c}\right)^2\right)}=\frac{\phi^2R}{2\left(\frac{1}{\omega^4C^2}+\frac{R^2-2L}{\omega^2}+L^2\right)}\)

Do đó: \(\phi\) không đổi. Đặt : \(\frac{1}{\omega^2}=x\)

Xét f (x) \(=\frac{x^2}{C^2}+\left(R^2-2L\right)x+2L^2\)

=> P_max \(\Leftrightarrow x_0=\frac{2L-R^2}{2C^2}\)

Do P phụ thuộc hàm bậc 2 nên

\(P_1=P_2\Rightarrow x_1+x_2=2x_0\Leftrightarrow\frac{1}{\omega^2_1}+\frac{1}{\omega^2_2}=\frac{2}{\omega^2_0}\)

Mặt khác, tốc độ quay của rôto tỉ lệ thuận với tần số góc nên

\(\frac{1}{n^2_1}+\frac{1}{n^2_2}+\frac{1}{n^2_0}\Leftrightarrow n_0=2\frac{n^2_1n^2_2}{n^2_1+n^2_2}\)

31 tháng 5 2016

Từ đề bài ta suy ra M và N là vị trí có li độ \(\frac{\left|A\right|\sqrt{3}}{2}\)

\(\rightarrow\frac{T}{6}=0,05s\rightarrow T=0,3s\)

Ta có :

\(\upsilon=\frac{\upsilon_{max}}{2}\rightarrow\upsilon_{max}=40\pi\left(cm\text{ / s }\right)\rightarrow A\text{ω }=A.\frac{2\pi}{T}=40\pi\)

→ A = 6cm

31 tháng 5 2016

câu a hình như thiếu, bảo nam trần ơi , A = 6 cm ở đâu ra hay zậy

10 tháng 3 2016

Động năng: \(W_đ=\dfrac{1}{2}m.v^2=\dfrac{1}{2}.9,1.10^{-31}.(5,8.10^5)^2=1,53.10^{-19}(J)\)

Có: \(W_đ=e.U_h\Rightarrow U_h=\dfrac{1,53.10^{-19}}{1,6.10^{-19}}=0,96V\)

8 tháng 3 2016

Mỗi ô mạng cơ sở của tinh thể sắt gồm 88 nguyên tử sắt nằm ở 88 đỉnh mà mỗi nguyên tử này là thành phần gồm 88 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
NANA nguyên tử hay NA2NA2 ô mạng cở sở. Thể tích mol là μρμρ thì thể tích một ô cơ sở là 
           μρ:NA2=2μμNAμρ:NA2=2μμNA.
Vậy a=2μρNA−−−−√3=2,87.10−8cma=2μρNA3=2,87.10−8cm.
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng a3√2=2,485.10−8cma32=2,485.10−8cm.

8 tháng 3 2016

Mỗi ô mạng cơ sở của tinh thể sắt gồm 8 nguyên tử sắt nằm ở 8 đỉnh mà mỗi nguyên tử này là thành phần gồm 8 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
\(N_A\) nguyên tử hay \(\frac{N_A}{2}\) ô mạng cở sở. Thể tích mol là \(\frac{\mu}{\text{ρ}}\) thì thể tích một ô cơ sở là 
      \(\frac{\mu}{\text{ρ}}:\frac{N_A}{2}=\frac{2\mu}{\mu}N_A\)
Vậy \(a=\sqrt[3]{\frac{2\mu}{\text{ρ}N_A}}=2,87.10^{-8}cm\)
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng \(\frac{a\sqrt{3}}{2}=2,485.10^{-8}cm\)