Cho tam giác ABC cân tai A, điểm H thuộc AC sao cho BH vuông góc với AC....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ AK⊥BC tại K

Ta có: ΔABC cân tại A(gt)

mà AK là đường cao ứng với cạnh đáy BC(gt)

nên AK là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇔K là trung điểm của BC

\(BK=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABK vuông tại K, ta được:

\(AK^2+BK^2=AB^2\)

\(\Leftrightarrow AK^2=AB^2-BK^2=15^2-5^2=200\)

hay \(AK=10\sqrt{2}\left(cm\right)\)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(Hai cạnh bên)

mà AB=15cm(gt)

nên AC=15cm

Xét ΔABC có 

AK là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AK\cdot BC}{2}\)(1)

Xét ΔABC có 

BH là đường cao ứng với cạnh AC(gt)

nên \(S_{ABC}=\dfrac{BH\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AK\cdot BC=BH\cdot AC\)

\(\Leftrightarrow BH\cdot15=10\sqrt{2}\cdot10\)

\(\Leftrightarrow BH\cdot15=100\sqrt{2}\)

\(\Leftrightarrow BH=\dfrac{100\sqrt{2}}{15}=\dfrac{20\sqrt{2}}{3}\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=15^2-\left(\dfrac{20\sqrt{2}}{3}\right)^2\)

\(\Leftrightarrow AH^2=225-\dfrac{800}{9}=\dfrac{1225}{9}\)

hay \(AH=\dfrac{35}{3}cm\)

Vậy: \(AH=\dfrac{35}{3}cm\)

20 tháng 1 2017

Mau trả lời giúp

23 tháng 2 2017

hình như sai đề rùi bạn

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

3 tháng 2 2016

minh moi hok lop 6 thoi

3 tháng 2 2016

mình mới học lớp 6 thui

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

=>ΔAHB=ΔAKC

b: AH=căn 10^2-8^2=6cm

c: Xét ΔAKE vuông tại K và ΔAHE vuông tại H có

AE chung

AK=AH

=>ΔAKE=ΔAHE

=>góc KAE=góc HAE

=>AE là phân giác của góc BAC

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

12 tháng 4 2016

yêu cầu của câu c là gì vậy

12 tháng 4 2016

a)

xét 2 tam giác vuông ABH và ACH có:

AB=AC(gt)

AH(chung)

suy ra tam giác ABH=ACH(CH-CGV)

suy ra BH=CH và BAH=CAH

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

4 tháng 5 2018

a, Ta có ∆ABC cân ở A(gt)

AH\(\perp\) BC=>AH là đường cao

(1)=>AH đồng thời là trung tuyến=>HB=HC

(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH

b, Áp dụng định lí pyta go cho ∆ABH ta có

AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3

4 tháng 5 2018

d, Xét ∆DHB và ∆EHC có

Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)

Góc B=góc C ( tam giác ABC cân tai A gt)

HB =HC (cmt)

=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H