Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\frac{a}{c}\)= \(\frac{c}{b}\)\(\Rightarrow\)\(ab\)= \(c^2\)
Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)
Ta có: b(a2+c2)= b.a2+b.c2 (1)
Thay ab= c2 vào 1 ta có:
b.a2+b.a.b= b2.a+a2.bb
Ta có: a(b2+c2) = a.b2+a.c2 (2)
Thay ab= c2 vào (1) ta có:
a.b2+b.a.a= b2.a+a2.bb
Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)
\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)
\(\Rightarrow\)Đpcm (Điều phải chứng minh)
Chúc bn học tốt
a.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
Ta có:
a3+3a2+5=5ba3+3a2+5=5b
⇔a2(a+3)+5=5b⇔a2(a+3)+5=5b
⇔a2.5c+5=5b⇔a2.5c+5=5b
⇔a2.5c−1+1=5b−1⇔a2.5c−1+1=5b−1
b-1=0 hoặc c-1=0
nếu b-1=0 thì thay vào không thỏa mãn
Nếu c-1=0 thì c=1 a=2 và b=2
Bài 3:
a) \(25-y^2=8\left(x-2009\right)\)
\(\Rightarrow25-y^2⋮8\Leftrightarrow y^2\equiv1\left(mod8\right)\Leftrightarrow y=2k+1,k\inℤ\)
\(25-\left(2k+1\right)^2=8\left(x-2009\right)\)
\(\Leftrightarrow x=2006-\frac{k^2+k}{2}\)
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997=1.1997\)
mà \(x,y\inℤ\)nên
\(\hept{\begin{cases}x^2-y^2=1\\xy=1997\end{cases}}\)hoặc \(\hept{\begin{cases}x^2-y^2=-1\\xy=-1997\end{cases}}\)
Cả hai hệ phương trình này đều không có nghiệm nguyên nên phương trình đã cho không có nghiệm nguyên.
c) \(x+y+9=xy-7\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=17\)
mà \(x,y\inℤ\)nên ta có bảng sau:
x-1 | 1 | 17 | -1 | -17 |
y-1 | 17 | 1 | -17 | -1 |
x | 2 | 18 | 0 | -16 |
y | 18 | 2 | -16 | 0 |
Bài 1:
\(2009^{20}=\left(2009^2\right)^{10}< \left(2009.10001\right)^{10}=20092009^{10}\)
Bài 2:
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...1+\frac{2}{2007}+1+\frac{1}{2008}\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(=2009A\)
\(\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
A O B x y z
Kẻ tia \(Ox\)song song với \(a\)và \(b\).
Khi đó: \(\widehat{OAy}=\widehat{AOx}\)(hai góc so le trong bằng nhau)
\(\widehat{BOx}+\widehat{OBz}=180^o\)(hai góc trong cùng phía bù nhau)
\(\Leftrightarrow\widehat{BOx}=180^o-\widehat{OBz}=180^o-120^o=60^o\)
suy ra \(\widehat{AOB}=\widehat{AOx}+\widehat{BOx}=30^o+60^o=90^o\).
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
tương tự ta sẽ có : \(1< M< 2\) vậy M không phải số tự nhiên.
Bài 4.
a.ta có \(25-y^2\text{ chia hết cho 8 khi y là số lẻ}\)
vậy với mọi y lẻ thì đều thỏa mãn câu a
b. ta có :\(xy\left(x^2-y^2\right)=1997\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
vậy x,y phải là ước của 1997 mà 1997 là số nguyên tố nên : \(x,y\in\left\{-1997,-1,1,1997\right\}\)
thay lại không thỏa mãn
vậy pt không có nghiệm nguyên
c. ta có : \(\left(x-1\right)\left(y-1\right)=17\Rightarrow\orbr{\begin{cases}x-1=\pm1\\x-1=\pm17\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\text{ hoặc }\orbr{\begin{cases}x=-16\\x=18\end{cases}}\)
tương ứng ta có các cặp (xy) là (0,-16) (2,18), (-16,0), (18,2)
Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?
A. -5/6 B. -2/3 C. 3/8 D. 3/2
Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:
A. n = 4 B. n = 1 C. n = 3 D. n = 2
Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6
A. 1 B. -2 C. 0 D. -6
Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:
A. n = 2 B. n = 3 C. n = 1 D. n = 0
Câu 15: Tính (155 : 55).(35 : 65)
A. 243/32 B. 39/32 C. 32/405 D. 503/32
Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.
A. 6cm; 8cm; 10cm B. 5cm; 7cm; 13cm C. 2,5cm; 3,5cm; 4,5cm D. 5cm; 5cm; 8cm
Câu 19: Giá trị có tần số lớn nhất được gọi là:
A. Mốt của dấu hiệuB. Tần số của giá trị đóC. Số trung bình cộngD. Số các giá trị của dấu hiệu
Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:
A. 12 (đvdt) B. 5 (đvdt) C. 6 (đvdt) D. 10 (đvdt)
Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:
B. 12cm C. 10cm \(\sqrt{89}\)
Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả
A. a = 12; b = 21; c = 27 B. a = 2; C. a = 20; b = 35; c = 45 D. a = 40; b = 70; c = 90
a.Ta có $Oy, Oz$ cùng nằm trên nửa mặt phẳng có bờ là đường thẳng chứa tia $Ox$
$\widehat{xOy}=30^o,\widehat{xOz}=120^o\to \widehat{xOy}<\widehat{xOz}$
$\to Oy$ nằm giữa $Ox, Oz$
$\to \widehat{yOz}=\widehat{xOz}-\widehat{xOy}=90^o$
b.Ta có $Om,On$ là phân giác $\widehat{xOy},\widehat{xOz}$
$\to \widehat{xOm}=\dfrac12\widehat{xOy}=15^o,\widehat{xOn}=\dfrac12\widehat{xOz}=60^o$
$\to \widehat{mOn}=\widehat{xOn}-\widehat{xOm}=45^o$
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2007}\) + \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\)
B = 2008 + \(\dfrac{2007}{2}\) + \(\dfrac{2006}{3}\)+ ... + \(\dfrac{2}{2007}\) + \(\dfrac{1}{2008}\)
B = (1 + \(\dfrac{2007}{2}\)) + (1 + \(\dfrac{2006}{3}\)) + .. + (1 + \(\dfrac{2}{2007}\)) + (1 + \(\dfrac{1}{2008}\)) + 1
B = \(\dfrac{2+2007}{2}\) + \(\dfrac{3+2006}{3}\) +... + \(\dfrac{2007+2}{2007}\) + \(\dfrac{2008+1}{2008}\) + \(\dfrac{2009}{2009}\)
B = \(\dfrac{2009}{2}\) + \(\dfrac{2009}{3}\) + ... + \(\dfrac{2009}{2007}\) + \(\dfrac{2009}{2008}\) + \(\dfrac{2009}{2009}\)
B = 2009.( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ....+ \(\dfrac{1}{2007}\) + \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\))
Tỉ số của \(\dfrac{A}{B}\)
\(\dfrac{A}{B}\)= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}\) = \(\dfrac{1}{2009}\)