Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác MDNP có
\(\widehat{MDN}+\widehat{MPN}=180^0\)
nên MDNP là tứ giác nội tiếp
hay M,D,N,P cùng thuộc 1 đường tròn\(\left(1\right)\)
Xét tứ giác BMDN có
\(\widehat{MBN}+\widehat{MDN}=180^0\)
nên BMDN là tứ giác nội tiếp
hay B,M,D,N cùng thuộc 1 đường tròn\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra M,D,N,P,B cùng thuộc 1 đường tròn
3, Áp dụng BĐT Cauchy Schwarz dạng cộng mẫu thức ta có :
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Vậy ta có điều phải chứng minh
2 b
\(bđt< =>a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(< =>2abcd\le a^2d^2+b^2c^2\)
\(< =>a^2b^2+b^2c^2-2abcd\ge0\)
\(< =>\left(ab-cd\right)^2\ge0\)*đúng*
Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{c}{d}\)
Vậy ta đã hoàn tất chứng minh