K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Ta có : n2 + n = n\((\text{n + 1})\). Tích của hai số tự nhiên liên tiếp chỉ tận cùng bằng 0,2,6 nên n2 + n + 1 chỉ tận cùng bằng 1,3,7 không chia hết cho 5

Còn không chia hết cho 2 bạn làm tương tự

Chúc bạn học tốt :>

3 tháng 1 2016

thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách?  ai giải hộ với

 

3 tháng 1 2016

đưa lên câu hỏi người ta làm gì zay

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

BÀI 1:CHỨNG MINH RẰNG TỔNG CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP  THÌ CHIA  HẾT CHO 3, CÒN TỔNG CỦA 4 SỐ  TỰ NHIÊN LIÊN TIẾP  THÌ KHÔNG  CHIA HẾT CHO 4.BÀI 2:CHO 4 SỐ TỰ NHIÊN KHÔNG CHIA HẾT CHO 5,  KHI CHIA CHO 5 ĐƯỢC NHỮNG SỐ DƯ KHÁC NHAU. CHỨNG MINH RẰNG TỔNG CỦA CHÚNG CHIA HẾT CHO 5.BÀI 3:CHỨNG MINH RẰNG:a,TÍCH CỦA 2 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 2 b,TÍCH CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP THÌ...
Đọc tiếp

BÀI 1:CHỨNG MINH RẰNG TỔNG CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP  THÌ CHIA  HẾT CHO 3, CÒN TỔNG CỦA 4 SỐ  TỰ NHIÊN LIÊN TIẾP  THÌ KHÔNG  CHIA HẾT CHO 4.

BÀI 2:CHO 4 SỐ TỰ NHIÊN KHÔNG CHIA HẾT CHO 5,  KHI CHIA CHO 5 ĐƯỢC NHỮNG SỐ DƯ KHÁC NHAU. CHỨNG MINH RẰNG TỔNG CỦA CHÚNG CHIA HẾT CHO 5.

BÀI 3:CHỨNG MINH RẰNG:

a,TÍCH CỦA 2 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 2 

b,TÍCH CỦA 3 SỐ TỰ NHIÊN LIÊN TIẾP THÌ CHIA HẾT CHO 3

BÀI 4:TÌM n THUỘC N DDEER:

a,n+4 CHIA HẾT CHO N

b,3n + 7 CHIA HẾT CHO n

C,27-5N CHIA HẾT CHO n

BÀI 5:TÌM n THUỘC N ,SAO CHO:

a,n + 6 CHIA HẾT CHO  n +2

b,2n + 3 CHIA HẾT CHO  n -2

c,3n + 1 CHIA HẾT CHO 11 - 2n

BÀI 6:CHO 10k - 1 CHIA HẾT CHO 9 (vowis k > 1) chứng minh rằng:

a,102k - 1 chia hết cho 9

b,103k - 1 chia hết cho 9 

GIÚP MÌNH NHÉ ,AI NHANH NHẤT MINH TICK CHO.

NHỚ KB NỮA NHE ...

5
25 tháng 10 2018

gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3

tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3

tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4

25 tháng 10 2018

thanks bn những bn có thể tra lời giúp mình hết có được ko???

17 tháng 8 2018

Bài 1:

- Gọi 6 số từ nhiên liên tiếp là a ; a+ 1; a+2 ; a+3 ; a+4 ; a+5 (a : tự nhiên)

Tổng của chúng là:

a+ (a+1) + (a+2) +(a+3)+(a+4)+(a+5)

= 6a+15

Ta có: 6a chia hết cho 6 với mọi a.

15 không chia hết cho 6.

=> Tổng của chung không chia hết cho 6.

13 tháng 8 2018

Làm từng phần thôi dài quá

Bài 1 :

Gọi số tự nhiên đầu tiên tiên là a

=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5

= 6a + 15

mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết

13 tháng 8 2018

Bài 2 :

Ta thấy : 3^2018 có tận cùng là 1 số lẻ

11^2017 cũng có tận cùng là một số lẻ

=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2

12 tháng 8 2018

Bài 1:

Tổng của 6 STN liên tiếp coi là:

\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15⋮̸6\)

KL: Tổng của 6 STN liên tiếp không chia hết cho 6.

Bài 2:

\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )

\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)

KL; đpcm.

Bài 3 :

a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)

KL: ...

b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)

KL: ...

3 tháng 5 2018

Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5) 
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5 
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25 
mâu thuẫn => điều g/s sai => đpcm

\(\forall\)bạn tìm đi nha

Giả sử :

\(n^2+5n+5\text{ }⋮\text{ }25\)

Do \(5n+5\text{ }⋮\text{ }5\)\(\Rightarrow n^2\text{ }⋮\text{ }5\) 

Vì 5 là số nguyên tố nên n chia hết cho 5.

\(\Rightarrow n=5k\left(k\in N\right)\)

\(\Rightarrow n^2+5n+5=25k^2+25k+5\)

Vì 25k2 + 25k chia hết cho 25 nhưng 5 không chia hết cho 25 nên n2 +5n + 5 không chia hết cho 25 nên điều giả sử là sai .

=> đpcm