K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Sửa đề:

\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)

9 tháng 12 2018

cảm ơn anh để em xem lại 

2 tháng 9 2019

a)Ta có :

(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0

<=>2a2+2b2+2c2+2ab+2bc+2ca=0

<=>(a+b)2+(b+c)2+(c+a)2=0

<=>a+b =b+c =c+a =0

<=>a=b=c=0

Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.

b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y

Ta có: 

\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)

= a2+b2+c2+ab+bc+ca.

=a2+b2+c2+ab+bc+ca

Gt thêm nhe

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

18 tháng 2 2019

dễ thật mak =((

ko spam nx nhé

sử dụng đồng dạng và các câu sau có thể dựa vào các câu trc thay vào và chứng minh nha

5 tháng 10 2019

Có ab + bc + ca = 0

=> 2ab + 2bc + 2ca = 0

Lại có a2 + b2 + c2 = 0             (1)        

=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0

=> (a + b + c)2 = 0

=> a + b + c = 0                        (2)

Từ (1) và (2) => a = b = c (đpcm)

5 tháng 10 2019

Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)

Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)

\(\Leftrightarrow a=b=c\left(đpcm\right)\)

18 tháng 5 2016

phan tinh ra thi o=2a^2+2b^2+2c^2-2ab-2ac-2bc

                      0=(a-b)^2+(a-c)^2+(b+c)^2

                      suy ra (a-b)^2>=0 (1)

                               (a-c)^2>=0 (2)

                               (b-c)^2>=0 (3)

tu 1 va 2 suy ra a=b (4)

tu1va 3 suy ra a=c (5)

tu 4 va 5 suy ra a=b=c (dpcm)

28 tháng 10 2019

Bai này quen quen ! Mình còn ghi trong vở nè !

Chứng minh:

Áp dụng bất đẳng thức Schur ta có :

\(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\left(đpcm\right)\)