Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)1/7xx2/7+1/7xx5/7+6/7`
`=1/7xx(2/7+5/7)+6/7`
`=1/7xx1+6/7`
`=1/7+6/7=1`
`b)6/11xx4/9+6/11xx7/9-6/11xx2/9`
`=6/11xx(4/9+7/9-2/9)`
`=6/11xx9/9`
`=6/11`
Sorry nãy ghi thiếu.
`c)4/25xx5/8xx25/4xx24`
`=(4xx5xx25xx24)/(25xx8xx4)`
`=(4xx5xx24)/(4xx8)`
`=(5xx24)/8`
`=5xx3=15`
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
1. Tính
\(a,5\times\dfrac{7}{3}=\dfrac{35}{3}\)
\(b,\dfrac{13}{4}:7=\dfrac{13}{4}\times\dfrac{1}{7}=\dfrac{13}{28}\)
2. Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\)
\(=\dfrac{15}{35}+\dfrac{14}{35}+\dfrac{3}{4}\)
\(=\dfrac{29}{35}+\dfrac{3}{4}\)
\(=\dfrac{116}{140}+\dfrac{105}{140}\)
\(=\dfrac{221}{140}\)
\(b,\dfrac{9}{7}-\dfrac{5}{11}\times\dfrac{11}{7}\)
\(=\dfrac{9}{7}-\dfrac{55}{77}\)
\(=\dfrac{99}{77}-\dfrac{55}{77}\)
\(=\dfrac{44}{77}=\dfrac{4}{7}\)
\(c,\dfrac{3}{5}\times\dfrac{5}{7}+\dfrac{4}{7}\)
\(=\dfrac{3}{5}\times\left(\dfrac{5}{7}+\dfrac{4}{7}\right)\)
\(=\dfrac{3}{5}\times\dfrac{9}{7}\)
\(=\dfrac{27}{35}\)
\(d,\dfrac{7}{9}\times\dfrac{2}{5}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}\times\dfrac{11}{3}\)
\(=\dfrac{154}{135}\)
\(e,\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
\(=\dfrac{27}{21}+\dfrac{14}{21}-\dfrac{1}{4}\)
\(=\dfrac{41}{21}-\dfrac{1}{4}\)
\(=\dfrac{164}{84}-\dfrac{21}{84}\)
\(=\dfrac{143}{84}\)
\(g,\dfrac{4}{9}:\dfrac{3}{5}\times\dfrac{2}{11}\)
\(=\dfrac{4}{9}\times\dfrac{5}{3}\times\dfrac{2}{11}\)
\(=\dfrac{20}{27}\times\dfrac{2}{11}\)
\(=\dfrac{40}{297}\)
\(h,\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(=\left(\dfrac{7}{2}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\left(\dfrac{35}{10}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\dfrac{32}{10}:\dfrac{2}{5}\)
\(=\dfrac{16}{5}\times\dfrac{5}{2}\)
\(=\dfrac{80}{10}=8\)
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
????????????????????????????
chấm hỏi