K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 3 2018
A B C F E D H 1 2 Ta thấy
\(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{B}+\widehat{D}=90^o\)
=> \(\widehat{D}=\widehat{C}\)
Xét ΔFEC và ΔFBD có
\(\widehat{F}1=\widehat{F2}=90^o\)
\(\widehat{C}=\widehat{D}\) (cmt)
=> ΔFEC ∼ ΔFBD (đpcm)
b) Xét ΔAED và ΔHAC có
\(\widehat{DAE}=\widehat{AHC}=90^o\)
\(\widehat{D}=\widehat{C}\) (cmt)
=> ΔAED ∼ΔHAC (đpcm)
A B C M F E
a)Xét tam giác ABC và tam giác MBA có:
góc BAC = góc BMA(=90o do AM là đường cao và tam giác ABC vuông)
Góc ABC chung
=>\(\Delta ABC\infty\Delta MBA\)(g.g)(1)
b)Xét tam giác ABC và tam giác MAC có:
Góc ACB chung
góc BAC = góc AMC(=900)
=>\(\Delta ABC\infty\Delta MAC\)(g.g)(2)
Từ 1 và 2 =>\(\Delta MBA\infty\Delta MAC\) hay \(\Delta AMB\infty\Delta CMA\)
c)\(\Delta AMB\infty\Delta CMA\)=>\(\dfrac{AM}{CM}=\dfrac{BM}{AM}\)
=>AM2=BM.CM
Mà BM+CM=BC,BC=15cm BM=6cm=>CM=9cm
=>AM2=6.9=54
=>AM=\(3\sqrt{6}\)(cm)
Áp dụng định lí pytago cho tam giác AMB ta có:
AB2=AM2+BM2=54+62=90
=>AB=\(3\sqrt{10}\)(cm)
d)SAFC=1/2 SABC(chung đường cao từ A đáy FC=1/2 BC do F nằm trên trung trực BC và F thuộc BC)
Ta có:FB=FB=\(\dfrac{BC}{2}=7,5\left(cm\right)\)
AM//FE do cùng vuông góc với BC
=>\(\dfrac{CF}{CM}=\dfrac{CE}{CA}\)
=>\(\dfrac{CE}{CA}=\dfrac{7,5}{9}=\dfrac{5}{6}\)
=>SEFC=\(\dfrac{5}{6}\)SAFC(chung đường cao từ F và EC=\(\dfrac{5}{6}CA\))
=>SEFC=(\(\dfrac{5}{6}\cdot\dfrac{1}{2}\))SABC=\(\dfrac{5}{12}\)SABC