Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự kẻ ạ :3
a)
xét ΔABE và ΔACF có:
\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)
Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!
trong cái xã hội này có làm thì mới có ăn,ko lam mà ăn chỉ có ăn đầu b** ăn c** nhá
1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{DBA}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA
Suy ra: BF/BD=BC/BA
hay \(BF\cdot BA=BD\cdot BC\)
2: Ta có: BF/BD=BC/BA
nên BF/BC=BD/BA
Xét ΔBDF và ΔBAC có
BF/BC=BD/BA
\(\widehat{DBF}\) chung
Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)
3: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}=90^0\)
Do đó: ABDE là tứ giác nội tiếp
Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)
mà \(\widehat{CDE}+\widehat{BDE}=180^0\)
nên \(\widehat{CDE}=\widehat{BAC}\)