Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)
\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)
\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)
\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)
Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)
\(\Rightarrow1-P\ge0\Rightarrow P\le1\)
\(a.P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Để : \(P\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\left(\sqrt{x}+1\right)\in\left\{\pm1;\pm2\right\}\)
+) \(\sqrt{x}+1=1\Leftrightarrow x=0\left(TM\right)\)
+) \(\sqrt{x}+1=-1\Leftrightarrow vô-n^o\)
+) \(\sqrt{x}+1=2\Leftrightarrow x=1\left(KTM\right)\)
+) \(\sqrt{x}+1=-2\Leftrightarrow vô-n^o\)
KL.............
\(b.Q=\dfrac{\sqrt{a}+1}{\sqrt{a}+2}=\dfrac{\sqrt{a}+2-1}{\sqrt{a}+2}=1-\dfrac{1}{\sqrt{a}+2}\)
Để : \(Q\in Z\Leftrightarrow\dfrac{1}{\sqrt{a}+2}\in Z\Leftrightarrow\left(\sqrt{a}+2\right)\in\left\{\pm1\right\}\)
+) \(\sqrt{a}+2=1\Leftrightarrow vô-n^o\)
+) \(\sqrt{a}+2=-1\Leftrightarrow vô-n^o\)
KL............
\(c.A=\dfrac{\sqrt{a}-1}{\sqrt{a}-4}=\dfrac{\sqrt{a}-4+3}{\sqrt{a}-4}=1+\dfrac{3}{\sqrt{a}-4}\)
Để : \(A\in Z\Leftrightarrow\dfrac{3}{\sqrt{a}-4}\in Z\Leftrightarrow\left(\sqrt{a}-4\right)\in\left\{\pm1;\pm3\right\}\)
+) \(\sqrt{a}-4=1\Leftrightarrow a=25\left(TM\right)\)
+) \(\sqrt{a}-4=-1\Leftrightarrow a=9\left(TM\right)\)
+) \(\sqrt{a}-4=3\Leftrightarrow a=49\left(TM\right)\)
+) \(\sqrt{a}-4=-3\Leftrightarrow a=1\left(TM\right)\)
KL............
P/s : Mình thấy đề bài b sai nhé , mẫu phải là \(\sqrt{a}-2\) thì mới phù hợp ĐK đã cho .
a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\) = \(\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\) = \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^4}}\)
= \(\dfrac{x-1}{\sqrt{y}-1}\) \(\sqrt{\dfrac{\left(y-1\right)^4}{\left(x-1\right)^4}}\)
= \(\dfrac{x-1}{\sqrt{y}-1}\)\(\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^2}\)
= \(\dfrac{\sqrt{y-1}}{x-1}\)
Chúc bạn học tốt :3
Câu 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay 0<a<4
\(A=\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{5\sqrt{5}+5-5-\sqrt{5}}{\sqrt{5^2}-1}=\frac{5\sqrt{5}-\sqrt{5}}{5-1}=\frac{4\sqrt{5}}{4}=\sqrt{5}\)
a) Ta có : \(x\ge0\)
\(\Leftrightarrow2\sqrt{x}\ge0\Leftrightarrow-2\sqrt{x}\le0\Leftrightarrow x+1-2\sqrt{x}\le x+1\Leftrightarrow\left(1-\sqrt{x}\right)^2\le x+1\)
\(\Leftrightarrow1-\sqrt{x}\le\sqrt{x+1}\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
b) Bạn tự chứng minh nha