Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2
<=>x+2-11\(⋮\)x+2
Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2
=>x+2EƯ(11)={-1;1;-11;11}
=>xE{-3;-1;-13;9}
Để x-9/x+2 có giá trị là một số nguyên thì ta có:
x-9 chia hết cho x+2
=> x+2-11 chia hết cho x+2
Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2
=> x+2 ϵ Ư(11) = {-1;1;-11;11}
=> x ϵ { -3;-1;-13;9 }
để A thuộc Z
=>2x+1 chia hết x-3
<=>2(x-3)+7 chia hết x-3
=>7 chia hết x-3
=>x-3 thuộc {1,-1,7,-7}
=>x thuộc {4,2,10,-4}
để B thuộc Z
=>x2-1 chia hết x+1
<=>x(x+1)-2 chia hết x+1
=>2 chia hết x+1
=>x+1 thuộc {1,-1,2,-2}
=>x thuộc {0,-2,1,-3}
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Bài 17: Tìm số nguyên n để các phân số sau có giá trị nguyên:
a)\(\frac{3}{x-1}\)b)\(\frac{4}{2x-1}\)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
Để \(\frac{x+5}{2x-2}\inℤ\) thì \(\left(x+5\right)⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2\left(x+5\right)\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x+10\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x-2+10\right]⋮\left(2x-2\right)\)
Vì \(\left[2x-2\right]⋮\left(2x-2\right)\) nên \(10⋮\left(2x-2\right)\)
\(\Leftrightarrow\left(2x-2\right)\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
ĐKXĐ : \(x\ne1\)
\(\frac{x+5}{2x-2}=\frac{x-1+6}{2\left(x-1\right)}=\frac{2-1}{2\left(x-1\right)}+\frac{6}{2\left(x-1\right)}=\frac{1}{2}+\frac{3}{x-1}\)
\(\Rightarrowđể\frac{x+3}{2x-2}\)có giá trị nguyên thì \(x-1\inƯ\left(3\right)\Rightarrow x-1\in\left\{-1;-1;1;3\right\}\)
vậy để \(\frac{x+5}{2x-2}\)có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
\(\text{Đ}\text{ể}\) \(A\in Z\) thì x + 5 chiaheets x + 1
<=> x + 1 + 4 chia ết x + 1
=> 4 chia hết x + 1
=> x + 1 thuộc Ư(4) = {-1;1;-4;4}
=> x = {-2;0;-5;3}